Home > Articles > Business & Management

Introduction to Mining the Talk: Unlocking the Business Value in Unstructured Information

The ever-increasing complexity of relationships and interactions is a growing problem faced by businesses. The mining of unstructured information is a potential solution.
This chapter is from the book

People are talking about your business every day. Are you listening?

Your customers are talking. They're talking about you to your face and behind your back. They're saying how much they like you, and how much they hate you. They're describing what they wish you would do for them, and what the competition is already doing for them. They are writing emails to you, posting blogs about you, and discussing you endlessly in public forums. Are you listening?

Other businesses and organizations are talking too. Researchers talk about new technologies and approaches you might be interested in. Other businesses describe innovations you could leverage in your products. Your competitors are revealing technical approaches and broadcasting their strategies in various publications. They talk about what they are working on and what they think is important. Are you listening?

Your employees are also talking. They are producing great ideas that are languishing for lack of the right context to apply them. They are looking for the right partners to help them innovate and create the next big thing for your company. They reveal new ways to improve your internal processes and even change the entire vision for your company. Are you listening?

All of this talk is going on out there now, even as you read these pages. And you can listen—if you know how. This book is about how we learned to listen to the talk and to turn it into valuable business insights for our company and for our customers. Now we would like to share that knowledge with you.

A Short Story..."The Contest"

Writing this book has been a project that beckoned for many years. We had started and stopped multiple times. We knew we wanted to write the book, but we had trouble convincing ourselves that anyone would want to read it. At a gut level, we knew that what we were doing was important and unique. However, there were a lot of competing methods and products, with more added every day, and we could not spend all of our time evaluating each of them to determine if our approach was measurably superior. Then, in May 2006, an event happened that in one day demonstrated convincingly that our approach was significantly better than all the other alternatives in our field. The results of this day would energize us to go ahead and complete this book.

It began when a potential client was considering a large unstructured data mining project. Like most companies, they had a huge collection of documents describing customer interactions. They wanted to automatically classify these documents to route them to the correct business process. They questioned whether or not this was even feasible, and if so, how expensive would it be. Rather than invite all the vendors in this space to present proposals, they wanted to understand how effective each technical approach was on their data. To this end, they set up the following "contest."

They took a sample of 5,000 documents that had been scanned and converted to text and divided them manually into 50 categories of around 100 documents each. They then invited seven of the leading vendors with products in this space to spend one week with the data using whatever tools and techniques they wished to model these 50 categories. When they were done, they would be asked to classify another unseen set of 25,000 documents. The different vendors' products would be compared based on speed, accuracy of classification, and ease of use during training. The results would be shared with all concerned.

That was it. The "contest" had no prize. There was no promise of anything more on the client's part after it was over. No money would change hands. Nothing would be published about the incident. There was no guarantee that anything would come of it. I was dead set against participating in this activity for three very good reasons: 1) I thought that the chances it would lead to eventual business were small; 2) I didn't think the problem they were proposing was well formed since we would have no chance to talk to them up front to identify business objectives, and from these to design a set of categories that truly reflected the needs of the business as well as the actual state of the data; and 3) I was already scheduled to be in London that week working with a paying customer.

I explained all of these reasons to Jeff, and he listened patiently and said, "You could get back a day early from London and be there on Friday."

"So I would have one day while the other vendors had five! No way!"

"You won't need more than one day. You'll do it in half a day." I didn't respond to that—I recognize rank flattery when I hear it. Then Jeff said, "I guess you really don't want to do this."

That stopped me a moment. The truth was I did want to do it. I had always been curious to know how our methods stacked up against the competition in an unbiased comparison, and here was an opportunity to find out. "OK. I'll go," I found myself saying.

As planned, I arrived at the designated testing location on Friday morning at 9AM. A representative of the client showed me to an empty cubicle where sat a PC that contained the training data sample. On the way, he questioned me about whether or not I would want to work until late in the day (this was the Friday before Memorial Day weekend). I assured him that this would not be the case. He showed me where on the hard drive the data was located and then left. I installed our software1 on the PC and got to work.

About an hour later, he stopped by to see how I was coming along. "Well, I'm essentially done modeling your data," I said. He laughed, assuming I was making a joke. "No, seriously, take a look." We spent about an hour perusing his data in the tool. I spent some time showing him the strengths and weaknesses of the classification scheme they had set up, showing him exactly which categories were well defined and which were not, and identifying outliers in the training set that might have a negative influence on classifier performance. He was quite impressed.

"So, can you classify the test set now?" he asked.

"Sure, I'll go ahead and start that up." I kicked off the process that classified the 25,000 test documents based on the model generated from the training set categories.

We watched it run together for a few seconds. Then he asked me how long it would take. I tried to calculate in my head how long it should take based on the type of model I was using and the size of the document collection. I prevaricated just long enough before answering. Before I could give my best guess, the classification had completed. It took about one minute.

"So that's it? You're done?" he asked, clearly bemused.

"Yes. We can try some other classification models to see if they do any better, but I think this will probably be the best we can come up with. You seem surprised."

He lowered his voice to barely a whisper. "I shouldn't be telling you this, but most of the other vendors are still here, and some of them still haven't come up with a result. None of them finished in less than three days. You did it all in less than two hours? Is your software really that much better than theirs? How does your accuracy stack up?"

"I don't know for sure," I answered truthfully, "but based on the noise I see in your training set, and the accuracy levels our models predict, I doubt they will do any better than we just did." (Two weeks later, when the results were tabulated for all vendors, our accuracy rate was almost exactly as predicted, and it turned out to be better than any of the other participating vendors.)

"So why is your stuff so much better than theirs?" he asked.

"That's not an easy question to answer. Let's go to lunch, and I'll tell you about it."

What I told the client over lunch is the story of how and why our methodology evolved and what made it unique. I explained to him how every other unstructured mining approach on the market was based on the idea that "the best algorithm wins." In other words, researchers had picked a few sets of "representative" text data, often items culled from news articles or research abstracts, and then each created their own approaches to classifying these sets of articles in the most accurate fashion. They honed the approaches against each other and tuned them to perform with optimum speed and accuracy on one type of unstructured data. Then these algorithms eventually became products, turned loose on a world that looked nothing like the lab environment in which they were optimally designed to succeed.

Our approach was very different. It assumed very little about the kind of unstructured data that would be given as input. It also didn't assume any one "correct" classification scheme, but observed that the classification of these documents might vary depending on the business context. These assumptions about the vast variability inherent in both business data and classification schemes for that data, led us to an approach that was orders of magnitude more flexible and generic than anything else available on the market. It was this flexibility and adaptability that allowed me to go into a new situation and, without ever having seen the data or the classification scheme ahead of time, quickly model the key aspects of the domain and produce an automated classifier of high accuracy and performance.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020