Home > Articles

This chapter is from the book

3.3 Inductor Circuits

Inductors as discussed in Chapter 1, "Introduction to Electronics, Electrons, and Light Speed," simply store energy in a magnetic field. In embedded system design, you won’t actually use many inductors; they are more commonly found in audio and video circuits or when designing complex filters. So, we don’t need to cover them as in depth as we did with capacitors, so I just want to show you a couple circuits and some results.

3.3.1 Inductors Model

Figure 3.34 depicts both a more physical image of an inductor and a circuit diagram. To refresh your memory, the inductor works simply by passing a current through the inductor: As the current flows, a magnetic field is generated. This field strength is proportional to the number of turns of wire in the inductor, the geometry, etc.; these factors are lumped together and called inductance, L, and measured in henrys, named after the physicist Joseph Henry. In any case, as the current flows and the field is generated, this also develops a voltage across the inductor with the governing equation:

Figure 3.34

Figure 3.34 Physical inductor model.

Equation 3.2: Inductance.

  • V = L*di/dt

That is, the rate change of current I in the circuit multiplied by the inductance is equal to the voltage, so 1 henry of inductance with 1 amp of current generates a voltage of 1V.

Inductors can be used just as capacitors to create low pass and high pass filters, but they would be huge in such cases. Therefore, as mentioned, inductors are only used in high frequency applications in most cases.

3.3.2 Inductors in Series and Parallel

Inductors sum just as resistors do in series and parallel combinations; thus given a collection of inductors in series, their equivalent inductance as shown in Figure 3.35 is

  • Leq = L1 + L2 + ... + Ln

And in parallel

  • 1/Leq = 1/L1 + 1/L2 + ... + 1/Ln
Figure 3.35

Figure 3.35 Inductors in series and parallel.

3.3.3 The Step Response of an Inductor

Referring to the governing equation of the inductor, we can surmise that the inductor seems like a short to a DC current; that is, the voltage across the inductor must be 0. Only when the current is changing is there a voltage developed. Let’s now take a look at what happens at this time. Assuming that we have a DC current of I0 as shown in Figure 3.36 at t=0- (notice at this point there is no voltage drop over the inductor since it’s a short to the current source), we switch the switch from position 1 to 2 and switch out the current source and switch in the load resistor R; we now have the circuit shown in Figure 3.36. Writing a loop equation, we get

  • L*di/dt + R*I = 0
Figure 3.36

Figure 3.36 Inductor Analysis Circuit.

Which again is a first order differential equation with solution of the form A*ex; knowing that and knowing that the current at t=0 is I0, we arrive at this final solution as a function of time t

  • I(t) = I0*e-(R/L)*t

Notice the (R/L) term? This is similar to the R*C term in the capacitor model, thus R/L is the time constant in an inductive circuit. These are all the results we need for now; we aren’t going to use inductors in our designs, so it’s not worth the time to pursue more analysis. Let’s take a look at some final results.

3.3.4 RLC Circuits

The final model of many circuit elements, including conductor paths and filters, is a combination of R, L, and C. There are a number of possible permutations of RLC, but let’s look at the two most obvious: series and parallel. Series RLC

Figure 3.37 depicts the step response of an RLC circuit to a digital 5V pulse. This is very close to the real world and if you understand this you are 99% there to understanding what happens at the analog level of digital signals. In any case, referring to the figure, we send a digital signal through a transmission line—maybe it’s a data bus line, a control signal, etc.—in any case, due to the capacitance, inductance, and resistance of the connection, the line seems like a series RLC model, so what does the step function end up looking like? Figure 3.37 also shows this: We see that the signal rises exponentially as we suspected, but then it "rings" about the max; then when the step signal goes back to 0V, the RLC signals falls again to 0V exponentially, but rings again about 0V. So the inductance looks like its causing this ringing effect, and it is, thus, you must keep the inductance of your lines small, otherwise you will ring them so much that the data may get corrupted.

Figure 3.37

Figure 3.37 A series RLC circuit. Parallel RLC

Okay, so that’s the first case, series RLC. Let’s take a look at a more interesting case: parallel RLC, as shown in Figure 3.38. When you have a resistor, capacitor, and inductor in parallel like that, you create a special kind of circuit called an RL-tank—basically the precursor to an oscillator—so when you excite the circuit with a step input, the circuit charges and then discharges slowly by oscillating the energy away. This is easy to understand if you think about the two energy storage elements (capacitor and inductor) feeding each other. So the bottom line is that if you place an RLC in parallel you might get oscillations! And if you didn’t intend that you would have serious trouble.

Figure 3.38

Figure 3.38 A parallel RLC circuit.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020