Home > Articles > Hardware

Does Your Design Meet Its Specs? Introduction to Hardware Design Verification

Design verification is the process of ensuring that a design meets its specifications. This chapter introduces the concept of hardware design verification, and briefly covers the methods of design verification and their respective strengths.
This chapter is from the book

Chapter Highlights

  • What is design verification?
  • The basic verification principle
  • Verification methodology
  • Simulation-based verification versus formal verification
  • Limitations of formal verification
  • A quick overview of Verilog scheduling and execution semantics

From the makeup of a project team, we can see the importance of design verification. A typical project team usually has an equal number of design engineers and verification engineers. Sometimes verification engineers outnumber design engineers by as many as two to one. This stems from the fact that to verify a design, one must first understand the specifications as well as the design and, more important, devise a different design approach from the specifications. It should be emphasized that the approach of the verification engineer is different from that of the design engineer. If the verification engineer follows the same design style as the design engineer, both would commit the same errors and not much would be verified.

From the project development cycle, we can understand the difficulty of design verification. Statistical data show that around 70% of the project development cycle is devoted to design verification. A design engineer usually constructs the design based on cases representative of the specifications. However, a verification engineer must verify the design under all cases, and there are an infinite number of cases (or so it seems). Even with a heavy investment of resources in verification, it is not unusual for a reasonably complex chip to go through multiple tape-outs before it can be released for revenue.

The impact of thorough design verification cannot be overstated. A faulty chip not only drains budget through respin costs, it also delays time-to-market, impacts revenue, shrinks market share, and drags the company into playing the catch-up game. Therefore, until people can design perfect chips, or chip fabrication becomes inexpensive and has a fast turnaround time, design verification is here to stay.

1.1 What Is Design Verification?

A design process transforms a set of specifications into an implementation of the specifications. At the specification level, the specifications state the functionality that the design executes but does not indicate how it executes. An implementation of the specifications spells out the details of how the functionality is provided. Both a specification and an implementation are a form of description of functionality, but they have different levels of concreteness or abstraction. A description of a higher level of abstraction has fewer details; thus, a specification has a higher level of abstraction than an implementation. In an abstraction spectrum of design, we see a decreasing order of abstraction: functional specification, algorithmic description, register-transfer level (RTL), gate netlist, transistor netlist, and layout (Figure 1.1). Along this spectrum a description at any level can give rise to many forms of a description at a lower level. For instance, an infinite number of circuits at the gate level implements the same RTL description. As we move down the ladder, a less abstract description adds more details while preserving the descriptions at higher levels. The process of turning a more abstract description into a more concrete description is called refinement. Therefore, a design process refines a set of specifications and produces various levels of concrete implementations.


Figure 1.1 A ladder of design abstraction

Design verification is the reverse process of design. Design verification starts with an implementation and confirms that the implementation meets its specifications. Thus, at every step of design, there is a corresponding verification step. For example, a design step that turns a functional specification into an algorithmic implementation requires a verification step to ensure that the algorithm performs the functionality in the specification. Similarly, a physical design that produces a layout from a gate netlist has to be verified to ensure that the layout corresponds to the gate netlist. In general, design verification encompasses many areas, such as functional verification, timing verification, layout verification, and electrical verification, just to name a few. In this book we study only functional verification and refer to it as design verification. Figure 1.2 shows the relationship between the design process and the verification process.


Figure 1.2 The relationship between design and verification

On a finer scope, design verification can be further classified into two types. The first type verifies that two versions of design are functionally equivalent. This type of verification is called equivalence checking. One common scenario of equivalence checking is comparing two versions of circuits at the same abstraction level. For instance, compare the gate netlist of a prescan circuit with its postscan version to ensure that the two are equivalent under normal operating mode.

However, the two versions of the design differ with regard to abstraction level. For example, one version of the design is at the level of specification and the other version is at the gate netlist level. When the two versions differ substantially with regard to level of abstraction, they may not be functionally equivalent, because the lower level implementation may contain more details that are allowed, but are unspecified, at the higher level. For example, an implementation may contain timing constraints that are not part of the original specification. In this situation, instead of verifying the functional equivalence of the two versions, we verify instead that the implementation satisfies the specifications. Note that equivalence checking is two-way verification, but this is a one-way verification because a specification may not satisfy an unspecified feature in the implementation. This type of verification is known as implementation verification, property checking, or model checking. Based on the terminology of property checking, the specifications are properties that the implementation must satisfy. Based on the terminology of model checking, the implementation or design is a model of the circuit and the specifications are properties. Hence, model checking means checking the model against the properties.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020