Home > Articles > Programming

This chapter is from the book

This chapter is from the book

Data: Data-Type Keywords

Beyond the distinction between variable and constant is the distinction between different types of data. Some types of data are numbers. Some are letters or, more generally, characters. The computer needs a way to identify and use these different kinds. C does this by recognizing several fundamental data types. If a datum is a constant, the compiler can usually tell its type just by the way it looks: 42 is an integer, and 42.100 is floating point. A variable, however, needs to have its type announced in a declaration statement. You'll learn the details of declaring variables as you move along. First, though, take a look at the fundamental types recognized by C. K&R C recognized seven keywords relating to types. The C90 standard added two to the list. The C99 standard adds yet another three (see Table 3.1).

Table 3.1 C Data Keywords

Original K&R Keywords

C90 Keywords

C99 Keywords






















The int keyword provides the basic class of integers used in C. The next three keywords (long, short, and unsigned) and the ANSI addition signed are used to provide variations of the basic type. Next, the char keyword designates the type used for letters of the alphabet and for other characters, such as #, $, %, and *. The char type also can be used to represent small integers. Next, float, double, and the combination long double are used to represent numbers with decimal points. The _Bool type is for Boolean values (true and false), and _Complex and _Imaginary represent complex and imaginary numbers, respectively.

The types created with these keywords can be divided into two families on the basis of how they are stored in the computer: integer types and floating-point types.

Bits, Bytes, and Words

The terms bit, byte, and word can be used to describe units of computer data or to describe units of computer memory. We'll concentrate on the second usage here.

The smallest unit of memory is called a bit. It can hold one of two values: 0 or 1. (Or you can say that the bit is set to "off" or "on.") You can't store much information in one bit, but a computer has a tremendous stock of them. The bit is the basic building block of computer memory.

The byte is the usual unit of computer memory. For nearly all machines, a byte is 8 bits, and that is the standard definition, at least when used to measure storage. (The C language, however, has a different definition, as discussed in the "Using Characters: Type char" section later in this chapter.) Because each bit can be either 0 or 1, there are 256 (that's 2 times itself 8 times) possible bit patterns of 0s and 1s that can fit in an 8-bit byte. These patterns can be used, for example, to represent the integers from 0 to 255 or to represent a set of characters. Representation can be accomplished with binary code, which uses (conveniently enough) just 0s and 1s to represent numbers. (Chap- ter 15, "Bit Fiddling," discusses binary code, but you can read through the introductory material of that chapter now if you like.)

A word is the natural unit of memory for a given computer design. For 8-bit microcomputers, such as the original Apples, a word is just 8 bits. Early IBM compatibles using the 80286 processor are 16-bit machines. This means that they have a word size of 16 bits. Machines such as the Pentium-based PCs and the Macintosh PowerPCs have 32-bit words. More powerful computers can have 64-bit words or even larger.

Integer Versus Floating-Point Types

Integer types? Floating-point types? If you find these terms disturbingly unfamiliar, relax. We are about to give you a brief rundown of their meanings. If you are unfamiliar with bits, bytes, and words, you might want to read the nearby sidebar about them first. Do you have to learn all the details? Not really, not any more than you have to learn the principles of internal combustion engines to drive a car, but knowing a little about what goes on inside a computer or engine can help you occasionally.

For a human, the difference between integers and floating-point numbers is reflected in the way they can be written. For a computer, the difference is reflected in the way they are stored. Let's look at each of the two classes in turn.

The Integer

An integer is a number with no fractional part. In C, an integer is never written with a decimal point. Examples are 2, –23, and 2456. Numbers such as 3.14, 0.22, and 2.000 are not integers. Integers are stored as binary numbers. The integer 7, for example, is written 111 in binary. Therefore, to store this number in an 8-bit byte, just set the first 5 bits to 0 and the last 3 bits to 1 (see Figure 3.2).

Figure 3.2Figure 3.2 Storing the integer 7 using a binary code.

The Floating-Point Number

A floating-point number more or less corresponds to what mathematicians call a real number. Real numbers include the numbers between the integers. Some floating-point numbers are 2.75, 3.16E7, 7.00, and 2e–8. Notice that adding a decimal point makes a value a floating-point value. So 7 is an integer type but 7.00 is a floating-point type. Obviously, there is more than one way to write a floating-point number. We will discuss the e-notation more fully later, but, in brief, the notation 3.16E7 means to multiply 3.16 by 10 to the 7th power; that is, by 1 followed by 7 zeros. The 7 would be termed the exponent of 10.

The key point here is that the scheme used to store a floating-point number is different from the one used to store an integer. Floating-point representation involves breaking up a number into a fractional part and an exponent part and storing the parts separately. Therefore, the 7.00 in this list would not be stored in the same manner as the integer 7, even though both have the same value. The decimal analogy would be to write 7.0 as 0.7E1. Here, 0.7 is the fractional part, and the 1 is the exponent part. Figure 3.3 shows another example of floating-point storage. A computer, of course, would use binary numbers and powers of two instead of powers of 10 for internal storage. You'll find more on this topic in Chapter 15. Now, let's concentrate on the practical differences:

  • An integer has no fractional part; a floating-point number can have a fractional part.

  • Floating-point numbers can represent a much larger range of values than integers can. See Table 3.3 near the end of this chapter.

  • For some arithmetic operations, such as subtracting one large number from another, floating-point numbers are subject to greater loss of precision.

  • Because there is an infinite number of real numbers in any range—for example, in the range between 1.0 and 2.0—computer floating-point numbers can't represent all the values in the range. Instead, floating-point values are often approximations of a true value. For example, 7.0 might be stored as a 6.99999 float value—more about precision later.

  • Floating-point operations are normally slower than integer operations. However, microprocessors developed specifically to handle floating-point operations are now available, and they have closed the gap.

Figure 3.3Figure 3.3 Storing the number pi in floating-point format (decimal version).

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020