Home > Articles > Security > Network Security

  • Print
  • + Share This
This chapter is from the book

2.3 IP version 6

IP version 6 (IPv6) [Deering and Hinden, 1998] is much like the current version of IP, only more so. The basic philosophy—IP is an unreliable datagram protocol, with a minimal header—is the same, but there are approximately 0 details that matter. Virtually all of the supporting elements are more complex.

The most important thing to know about IPv6 is that easy renumbering is one of the design goals. This means that any address-based access controls need to know about renumbering, and need to be updated at the right times. Of course, they need to know about authentic renumbering events; fraudulent ones should, of course, be treated with the proper mix of disdain and contempt.

Renumbering doesn't occur instantaneously throughout a network. Rather, the new prefix—the low-order bits of hosts addresses are not touched during renumbering—is phased in gradually. At any time, any given interface may have several addresses, with some labeled "deprecated," i.e., their use is discouraged for new connections. Old connections, however, can continue to use them for quite some time, which means that firewalls and the like need to accept them for a while, too.

2.3.1 IPv6 Address Formats

IPv6 addresses aren't simple 128-bit numbers. Rather, they have structure [Hinden and Deering, 1998], and the structure has semantic implications. There are many different forms of address, and any interface can have many separate addresses of each type simultaneously.

The simplest address type is the global unicast address, which is similar to IPv4 addresses. In the absence of other configuration mechanisms, such as a DHCP server or static addresses, hosts can generate their own IPv6 address from the local prefix (see Section 2.3.2) and their MAC address. Because MAC addresses tend to be constant for long periods of time, a mechanism is defined to create temporary addresses [Narten and Draves, 2001]. This doesn't cause much trouble for firewalls, unless they're extending trust on the basis of source addresses (i.e., if they're misconfigured). But it does make it a lot harder to track down a miscreant's machine after the fact. If you need to do that, your routers will need to log what MAC addresses are associated with what IPv6 addresses—and routers are not, in general, designed to log such things.

There is a special subset of unicast addresses known as anycast addresses. Many different nodes may share the same anycast address; the intent is that clients wishing to connect to a server at such an address will find the closest instance of it. "Close" is measured "as the packets fly," i.e., the instance that the routing system thinks is closest.

Another address type is the site-local address. Site-local addresses are used within a "site"; border routers are supposed to ensure that packets containing such source or destination addresses do not cross the boundary. This might be a useful security property if you are sure that your border routers enforce this properly.

At press time, there was no consensus on what constitutes a "site." It is reasonably likely that the definition will be restricted, especially compared to the (deliberate) early vagueness. In particular, a site is likely to have a localized view of the DNS, so that one player's internal addresses aren't visible to others. Direct routing between two independent sites is likely to be banned, too, so that routers don't have to deal with two or more different instances of the same address.

It isn't at all clear that a site boundary is an appropriate mechanism for setting security policy. If nothing else, it may be too large. Worse yet, such a mechanism offers no opportunity for finer-grained access controls.

Link-local addresses are more straightforward. They can only be used on a single link, and are never forwarded by routers. Link-local addresses are primarily used to talk to the local router, or during address configuration.

Multicast is a one-to-many mechanism that can be thought of as a subset of broadcast. It is a way for a sender to transmit an IP packet to a group of hosts. IPv6 makes extensive use of multicast; things that were done with broadcast messages in IPv4, such as routing protocol exchanges, are done with multicast in IPv6. Thus, the address FF02:0:0:0:0:0:0:2 means "all IPv6 routers on this link." Multicast addresses are scoped; there are separate classes of addresses for nodes, links, sites, and organizations, as well as the entire Internet. Border routers must be configured properly to avoid leaking confidential information, such as internal videocasts.

2.3.2 Neighbor Discovery

In IPv6, ARP is replaced by the Neighbor Discovery (ND) protocol [Narten et al., 1998]. ND is much more powerful, and is used to set many parameters on end systems. This, of course, means that abuse of ND is a serious matter; unfortunately, at the moment there are no well-defined mechanisms to secure it. (The ND specification speaks vaguely of using Authentication Header (AH) (which is part of IPsec), but doesn't explain how the relevant security associations should be set up.) There is one saving grace: ND packets must have their hop limit set to 255, which prevents off-link nodes from sending such packets to an unsuspecting destination.

Perhaps the most important extra function provided by ND is prefix announcement. Routers on a link periodically multicast Router Advertisement (RA) messages; hosts receiving such messages update their prefix lists accordingly. RA messages also tell hosts about routers on their link; false RA messages are a lovely way to divert traffic.

The messages are copiously larded with timers: what the lifetime of a prefix is, how long a default route is good for, the time interval between retransmissions of Neighbor Solicitation messages, and so on.

2.3.3 DHCPv6

Because one way of doing something isn't enough, IPv6 hosts can also acquire addresses via IPv6's version of DHCP. Notable differences from IPv4's DHCP include the capability to assign multiple addresses to an interface, strong bidirectional authentication, and an optional mechanism for revocation of addresses before their leases expire. The latter mechanism requires clients to listen continually on their DHCP ports, which may present a security hazard; no other standards mandate that client-only machines listen on any ports. On the other hand, the ability to revoke leases can be very useful if you've accidentally set the lease time too high, or if you want to bring down a DHCP server for emergency maintenance during lease lifetime. Fortunately, this feature is supposed to be configurable; we suggest turning it off, and using modest lease times instead.

2.3.4 Filtering IPv6

We do not have wide area IPv6 yet on most of the planet, so several protocols have been developed to carry IPv6 over IPv4. If you do not want IPv6, tunneled traffic should be blocked. If you want

IPv6 traffic (and you're reading this book), you'll need an IPv6 firewall. If your primary firewall doesn't do this, you'll need to permit IPv6 tunnels, but only if they terminate on the outside of your IPv6 firewall. This needs to be engineered with caution.

There are several ways to tunnel IPv6 over an IPv4 cloud. RFC 3056 [Carpenter and Moore, 2001] specifies a protocol called 6to4, which encapsulates v6 traffic in IPv4 packets with the protocol number 41. There is running code for 6to4 in the various BSD operating systems. Another protocol, 6over4 [Carpenter and Jung, 1999], is similar. Packet filters can recognize this traffic and either drop it or forward it to something that knows what to do with tunneled traffic. The firewall package ipf, discussed in Section 11.3.2, can filter IPv6; however, many current firewalls do not.

Another scheme for tunneling IPv6 over IPv4 is called Teredo. (Teredo navalis is a shipworm that bores its way through wooden structures and causes extensive damage to ships and other wooden structures.) The protocol uses UDP port 3544 and permits tunneling through Network Address Translation (NAT) boxes [Srisuresh and Egevang, 2001]. If you are concerned about this, block UDP port 3544. While it is always prudent to block all UDP ports, except the ones that you explicitly want to open, it is especially important to make sure that firewalls block this one. If used from behind a NAT box, Teredo relies on an outside server with a globally routable address. Given the difficulty of knowing how many NAT boxes one is behind, especially as the number can vary depending on your destination, this scheme is controversial. It is not clear if or when it will be standardized.

A final scheme for tunneling IPv6 over today's Internet is based on circuit relays [Hagino and Yamamoto, 2001]. With these, a router-based relay agent maps individual IPv6 TCP connections to IPv4 TCP connections; these are converted back at the receiving router.

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020