Home > Articles > Programming > C/C++

This chapter is from the book

This chapter is from the book

16.2 The Empty Base Class Optimization (EBCO)

C++ classes are often "empty," which means that their internal representation does not require any bits of memory at run time. This is the case typically for classes that contain only type members, nonvirtual function members, and static data members. Nonstatic data members, virtual functions, and virtual base classes, on the other hand, do require some memory at run time.

Even empty classes, however, have nonzero size. Try the following program if you'd like to verify this:

 // inherit/empty.cpp 
 #include <iostream> 
 class EmptyClass { 
 int main() 
   std::cout << "sizeof(EmptyClass): " << sizeof(EmptyClass) 
        << '\n'; 

For many platforms, this program will print 1 as size of EmptyClass. A few systems impose more strict alignment requirements on class types and may print another small integer (typically, 4).

16.2.1 Layout Principles

The designers of C++ had various reasons to avoid zero-size classes. For example, an array of zero-size classes would presumably have size zero too, but then the usual properties of pointer arithmetic would not apply anymore. For example, let's assume ZeroSizedT is a zero-size type:

 ZeroSizedT z[10]; 
 &z[i] - &z[j]   // compute distance between pointers/addresses 

Normally, the difference in the previous example is obtained by dividing the number of bytes between the two addresses by the size of the type to which it is pointing, but when that size is zero this is clearly not satisfactory.

However, even though there are no zero-size types in C++, the C++ standard does specify that when an empty class is used as a base class, no space needs to be allocated for it provided that it does not cause it to be allocated to the same address as another object or subobject of the same type. Let's look at some examples to clarify what this so-called empty base class optimization (or EBCO) means in practice. Consider the following program:

 // inherit/ebco1.cpp 
 #include <iostream> 
 class Empty { 
   typedef int Int; // typedef members don't make a class nonempty 
 class EmptyToo : public Empty { 
 class EmptyThree : public EmptyToo { 
 int main() 
   std::cout << "sizeof(Empty):   " << sizeof(Empty) 
        << '\n'; 
   std::cout << "sizeof(EmptyToo):  " << sizeof(EmptyToo) 
        << '\n'; 
   std::cout << "sizeof(EmptyThree): " << sizeof(EmptyThree) 
        << '\n'; 

If your compiler implements the empty base optimization, it will print the same size for every class, but none of these classes has size zero (see Figure 16.2). This means that within class EmptyToo, the class Empty is not given any space. Note also that an empty class with optimized empty bases (and no other bases) is also empty. This explains why class EmptyThree can also have the same size as class Empty. If your compiler does not implement the empty base optimization, it will print different sizes (see Figure 16.3).

Figure 16.2Figure 16.2. Layout of EmptyThree by a compiler that implements the EBCO

Figure 16.3Figure 16.3. Layout of EmptyThree by a compiler that does not implement the EBCO Consider an example that runs into a constraint of empty base optimization:

 // inherit/ebco2.cpp 
 #include <iostream> 
 class Empty { 
   typedef int Int; // typedef members don't make a class nonempty 
 class EmptyToo : public Empty { 
 class NonEmpty : public Empty, public EmptyToo { 
 int main() 
   std::cout << "sizeof(Empty):  " << sizeof(Empty) << '\n'; 
   std::cout << "sizeof(EmptyToo): " << sizeof(EmptyToo) << '\n'; 
   std::cout << "sizeof(NonEmpty): " << sizeof(NonEmpty) << '\n'; 

It may come as a surprise that class NonEmpty is not an empty class After all, it does not have any members and neither do its base classes. However, the base classes Empty and EmptyToo of NonEmpty cannot be allocated to the same address because this would cause the base class Empty of EmptyToo to end up at the same address as the base class Empty of class NonEmpty. In other words, two subobjects of the same type would end up at the same offset, and this is not permitted by the object layout rules of C++. It may be conceivable to decide that one of the Empty base subobjects is placed at offset "0 bytes" and the other at offset "1 byte," but the complete NonEmpty object still cannot have a size of one byte because in an array of two NonEmpty objects, an Empty subobject of the first element cannot end up at the same address as an Empty subobject of the second element (see Figure 16.4).

Figure 16.4Figure 16.4. Layout of NonEmpty by a compiler that implements the EBCO

The rationale for the constraint on empty base optimization stems from the fact that it is desirable to be able to compare whether two pointers point to the same object. Because pointers are nearly always internally represented as just addresses, we must ensure that two different addresses (that is, pointer values) correspond to two different objects.

The constraint may not seem very significant. However, in practice, it is often encountered because many classes tend to inherit from a small set of empty classes that define some common typedefs. When two subobjects of such classes are used in the same complete object, the optimization is inhibited.

16.2.2 Members as Base Classes

The empty base class optimization has no equivalent for data members because (among other things) it would create some problems with the representation of pointers to members. As a result, it is sometimes desirable to implement as a (private) base class what would at first sight be thought of as a member variable. However, this is not without its challenges.

The problem is most interesting in the context of templates because template parameters are often substituted with empty class types, but in general one cannot rely on this rule. If nothing is known about a template type parameter, empty base optimization cannot easily be exploited. Indeed, consider the following trivial example:

 template <typename T1, typename T2> 
 class MyClass { 
   T1 a; 
   T2 b; 

It is entirely possible that one or both template parameters are substituted by an empty class type. If this is the case, then the representation of MyClass<T1,T2> may be suboptimal and may waste a word of memory for every instance of a MyClass<T1,T2>.

This can be avoided by making the template arguments base classes instead:

 template <typename T1, typename T2> 
 class MyClass : private T1, private T2 { 

However, this straightforward alternative has its own set of problems. It doesn't work when T1 or T2 is substituted with a nonclass type or with a union type. It also doesn't work when the two parameters are substituted with the same type (although this can be addressed fairly easily by adding another layer of inheritance; see page 287 or page 449). However, even if we satisfactorily addressed these problems, a very serious problem persists: Adding a base class can fundamentally modify the interface of the given class. For our MyClass class, this may not seem very significant because there are very few interface elements to affect, but as we see later in this chapter, inheriting from a template parameter can affect whether a member function is virtual. Clearly, this approach to exploiting EBCO is fraught with all kinds of trouble.

A more practical tool can be devised for the common case when a template parameter is known to be substituted by class types only and when another member of the class template is available. The main idea is to "merge" the potentially empty type parameter with the other member using EBCO. For example, instead of writing

 template <typename CustomClass> 
 class Optimizable { 
   CustomClass info;   // might be empty 
   void*    storage; 

a template implementer would use the following:

 template <typename CustomClass> 
 class Optimizable { 
   BaseMemberPair<CustomClass, void*> info_and_storage; 

Even without seeing the implementation of the template BaseMemberPair, it is clear that its use makes the implementation of Optimizable more verbose. However, various template library implementers have reported that the performance gains (for the clients of their libraries) do justify the added complexity.

The implementation of BaseMemberPair can be fairly compact:

 // inherit/basememberpair.hpp 
 template <typename Base, typename Member> 
 class BaseMemberPair : private Base { 
   Member member; 
   // constructor 
   BaseMemberPair (Base const & b, Member const & m) 
   : Base(b), member(m) { 
   // access base class data via first() 
   Base const& first() const { 
     return (Base const&)*this; 
   Base& first() { 
     return (Base&)*this; 
   // access member data via second() 
   Member const& second() const { 
     return this->member; 
   Member& second() { 
     return this->member; 

An implementation needs to use the member functions first() and second() to access the encapsulated (and possibly storage-optimized) data members.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020