Home > Articles

Functions and Modules

This chapter is from the book

Creative Exercises

  • 2.3.15 Binary representation. Write a program that takes a positive integer n (in decimal) as a command-line argument and prints its binary representation. Recall, in PROGRAM 1.3.7, that we used the method of subtracting out powers of 2. Now, use the following simpler method: repeatedly divide 2 into n and read the remainders backward. First, write a while loop to carry out this computation and print the bits in the wrong order. Then, use recursion to print the bits in the correct order.

  • 2.3.16 A4 paper. The width-to-height ratio of paper in the ISO format is the square root of 2 to 1. Format A0 has an area of 1 square meter. Format A1 is A0 cut with a vertical line into two equal halves, A2 is A1 cut with a horizontal line into two halves, and so on. Write a program that takes an integer command-line argument n and uses StdDraw to show how to cut a sheet of A0 paper into 2n pieces.

  • 2.3.17 Permutations. Write a program Permutations that takes an integer command-line argument n and prints all n ! permutations of the n letters starting at a (assume that n is no greater than 26). A permutation of n elements is one of the n ! possible orderings of the elements. As an example, when n = 3, you should get the following output (but do not worry about the order in which you enumerate them):

    bca cba cab acb bac abc
  • 2.3.18 Permutations of size k. Modify Permutations from the previous exercise so that it takes two command-line arguments n and k, and prints all P(n, k) = n ! / (nk)! permutations that contain exactly k of the n elements. Below is the desired output when k = 2 and n = 4 (again, do not worry about the order):

    ab ac ad ba bc bd ca cb cd da db dc
  • 2.3.19 Combinations. Write a program Combinations that takes an integer command-line argument n and prints all 2n combinations of any size. A combination is a subset of the n elements, independent of order. As an example, when n = 3, you should get the following output:

    a ab abc ac b bc c

    Note that your program needs to print the empty string (subset of size 0).

  • 2.3.20 Combinations of size k. Modify Combinations from the previous exercise so that it takes two integer command-line arguments n and k, and prints all C(n, k) = n ! / (k !(nk)!) combinations of size k. For example, when n = 5 and k = 3, you should get the following output:

    abc abd abe acd ace ade bcd bce bde cde
  • 2.3.21 Hamming distance. The Hamming distance between two bit strings of length n is equal to the number of bits in which the two strings differ. Write a program that reads in an integer k and a bit string s from the command line, and prints all bit strings that have Hamming distance at most k from s. For example, if k is 2 and s is 0000, then your program should print

    0011 0101 0110 1001 1010 1100

    Hint: Choose k of the bits in s to flip.

  • 2.3.22 Recursive squares. Write a program to produce each of the following recursive patterns. The ratio of the sizes of the squares is 2.2:1. To draw a shaded square, draw a filled gray square, then an unfilled black square.

  • 2.3.23 Pancake flipping. You have a stack of n pancakes of varying sizes on a griddle. Your goal is to rearrange the stack in order so that the largest pancake is on the bottom and the smallest one is on top. You are only permitted to flip the top k pancakes, thereby reversing their order. Devise a recursive scheme to arrange the pancakes in the proper order that uses at most 2n – 3 flips.

  • 2.3.24 Gray code. Modify Beckett (PROGRAM 2.3.3) to print the Gray code (not just the sequence of bit positions that change).

  • 2.3.25 Towers of Hanoi variant. Consider the following variant of the towers of Hanoi problem. There are 2n discs of increasing size stored on three poles. Initially all of the discs with odd size (1, 3, ..., 2n-1) are piled on the left pole from top to bottom in increasing order of size; all of the discs with even size (2, 4, ..., 2n) are piled on the right pole. Write a program to provide instructions for moving the odd discs to the right pole and the even discs to the left pole, obeying the same rules as for towers of Hanoi.

  • 2.3.26 Animated towers of Hanoi. Use StdDraw to animate a solution to the towers of Hanoi problem, moving the discs at a rate of approximately 1 per second.

  • 2.3.27 Sierpinski triangles. Write a recursive program to draw Sierpinski triangles (see PROGRAM 2.2.3). As with Htree, use a command-line argument to control the depth of the recursion.

  • 2.3.28 Binomial distribution. Estimate the number of recursive calls that would be used by the code

    public static double binomial(int n, int k)
       if ((n == 0) && (k == 0)) return 1.0;
       if ((n < 0) || (k < 0))   return 0.0;
       return (binomial(n-1, k) + binomial(n-1, k-1))/2.0;

    to compute binomial(100, 50). Develop a better implementation that is based on dynamic programming. Hint: See EXERCISE 1.4.41.

  • 2.3.29 Collatz function. Consider the following recursive function, which is related to a famous unsolved problem in number theory, known as the Collatz problem, or the 3n+1 problem:

    public static void collatz(int n)
       StdOut.print(n + " ");
       if (n == 1) return;
       if (n % 2 == 0) collatz(n / 2);
       else            collatz(3*n + 1);

    For example, a call to collatz(7) prints the sequence

    7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

    as a consequence of 17 recursive calls. Write a program that takes a command-line argument n and returns the value of i < n for which the number of recursive calls for collatz(i) is maximized. The unsolved problem is that no one knows whether the function terminates for all integers (mathematical induction is no help, because one of the recursive calls is for a larger value of the argument).

  • 2.3.30 Brownian island. B. Mandelbrot asked the famous question How long is the coast of Britain? Modify Brownian to get a program BrownianIsland that plots Brownian islands, whose coastlines resemble that of Great Britain. The modifications are simple: first, change curve() to add a random Gaussian to the x-coordinate as well as to the y-coordinate; second, change main() to draw a curve from the point at the center of the canvas back to itself. Experiment with various values of the parameters to get your program to produce islands with a realistic look.

  • 2.3.31 Plasma clouds. Write a recursive program to draw plasma clouds, using the method suggested in the text.

  • 2.3.32 A strange function. Consider McCarthy’s 91 function:

    public static int mcCarthy(int n)
       if (n > 100) return n - 10;
       return mcCarthy(mcCarthy(n+11));

    Determine the value of mcCarthy(50) without using a computer. Give the number of recursive calls used by mcCarthy() to compute this result. Prove that the base case is reached for all positive integers n or find a value of n for which this function goes into an infinite recursive loop.

  • 2.3.33 Recursive tree. Write a program Tree that takes a command-line argument n and produces the following recursive patterns for n equal to 1, 2, 3, 4, and 8.

  • 2.3.34 Longest palindromic subsequence. Write a program LongestPalindromicSubsequence that takes a string as a command-line argument and determines the longest subsequence of the string that is a palindrome (the same when read forward or backward). Hint: Compute the longest common subsequence of the string and its reverse.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020