Home > Articles > Hardware

Low-Power Design: An Overview

Our "always connected" culture has made portability an essential feature of our electronic systems, emphasizing efficient use of energy as a major design objective. Learn here about low-power design technologies and their current limitations.
This chapter is from the book

Introduction

The history of semiconductor devices began in the 1930s, when Lilienfeld and Heil [1,2] first proposed the Metal Oxide Semiconductor (MOS) Field-Effect Transistor (FET). However, it took 30 years before this idea was applied to functioning devices to be used in practical applications [3], and, up to the late 1970s, bipolar devices were the mainstream digital technology. Around 1980, this trend took a turn when MOS technology caught up and there was a crossover between bipolar and MOS shares. Complementary-MOS (CMOS) was finding more widespread use due to its low power dissipation, high packing density, and simple design, such that, by 1990, CMOS covered more than 90% of the total MOS sales, and the relation between MOS and bipolar sales was two to one.

In digital circuit applications, there was a performance gap between CMOS and bipolar logic. The existence of this gap, as shown in Figure 1.1, implies that neither CMOS nor bipolar had the flexibility required to cover the full delay-power space. This flexibility was achieved with the emergence of bipolar-compatible CMOS (BiCMOS) technology, the objective of which is to combine bipolar and CMOS so as to exploit the advantages of both at the circuit and system levels.

Figure 1.1Fig. 1.1 A comparison of CMOS, bipolar, and BiCMOS technologies in terms of speed and power.

In 1983, a bipolar-compatible process based on CMOS technology was developed, and BiCMOS technology with both the MOS and bipolar devices fabricated on the same chip was developed and studied [4–6]. The principal BiCMOS circuit in the early days was the BiCMOS totem-pole gate [7] as shown in Figure 1.2. This circuit was proposed by Lin et al. and is one of the earliest versions to be used in practice. It is commonly referred to as the conventional BiCMOS circuit. Since 1985, BiCMOS technologies developed beyond initial experimentation to become widespread production processes. The state-of-the-art bipolar and CMOS structures have been converging. Today, BiCMOS has become one of the dominant technologies used for high-speed, low-power, and highly functional Very-Large-Scale-Integration (VLSI) circuits [8–11], especially when the BiCMOS process has been enhanced and integrated into the CMOS process without any additional steps [12]. Because the process steps required for both CMOS and bipolar are similar, these steps can be shared for both of them.

Figure 1.2Fig. 1.2 Conventional BiCMOS inverter [43] (Reprinted by permission of Pearson Education, Inc.).

The concern for power consumption has been part of the design process since the early 1970s. At that time, however, the main design focuses were providing for high-speed operation and a design with minimum area; design tools were all geared toward achieving these two goals. Since the early 1990s, the semiconductor industry has witnessed an explosive growth in the demand and supply of portable systems in the consumer electronics market. High-performance portable products, ranging from small hand-held personal communication devices, such as pagers and cellular phones, to larger and more sophisticated products that support multimedia applications, such as lap-top and palm-top computers, have enjoyed considerable success among consumers. Indeed, we anticipate that, in the near future, almost half of the consumer electronics market will be in portable systems. Even though the performance, support features, and cost of a portable product are important to the consumers, its portability is often a key differentiator in a user's purchase decision.

1.1 Low-Power Design: An Overview

In the past, due to a high degree of process complexity and the exorbitant costs involved, low-power circuit design and applications involving CMOS and BiCMOS technologies were used only in applications where very low power dissipation was absolutely essential, such as wrist watches, pocket calculators, pacemakers, and some integrated sensors. However, low-power design is becoming the norm for all high-performance applications, as power is the most important single design constraint. Although designers have different reasons for lowering power consumption, depending on the target application, minimizing the overall power dissipation in a system has become a high priority.

One of the most important reasons for this trend is the advent of portable systems. As the "on the move with anyone, anytime, and anywhere" era becomes a reality, portability becomes an essential feature of the electronic systems interfacing with nonelectronic systems, emphasizing efficient use of energy as a major design objective.

The considerations for portability are due to numerous factors. First, the size and weight of the battery pack is fundamental. A portable system that has an unreasonably heavy battery pack is not practical and restricts the amount of battery power that can be loaded at any one time. Second, the convenience of using a portable system relies heavily on its recharging interval. A system that requires frequent recharging is inconvenient and hence limits the user's overall satisfaction in using the product.

Although the battery technology has improved over the years, its capacity has only managed to increase by a factor of two to four in the last 30 years or so; the computational power of digital integrated circuits has increased by more than four orders of magnitude. To illustrate the importance of low-power design, or the lack of it in portable systems, consider a future portable multimedia terminal that supports high-bandwidth wireless communication; bi-directional motion video; high-quality audio, speech, and pen-based input; and full texts/graphics. The power of such a terminal—when implemented using off-the-shelf components not designed for low power—is projected to reach approximately 40 W. Based on the current Nickel-Cadmium (NiCd) battery technology, which offers a capacity of 20 W-hour/pound, a 20-pound battery pack is required to stretch the recharge interval to 10 hours. Even with new battery technologies, such as the rechargeable lithium or polymers, battery capacity is not expected to improve by more than 30 to 40% over the next 5 years. Hence, in the absence of low-power design techniques, future portable products will have either unreasonably heavy battery packs or a very short battery life.

The issue of power also embraces reliability and the cost of manufacturing nonportable high-end applications. The rapidly increasing packing density, clock frequency, and computational power of microprocessors have inevitably resulted in rising power dissipation. The trends relating to the power consumption of microprocessors indicate that power has increased almost linearly with area-frequency product over the years. For example, the DEC21164, which has a die area of 3 cm2 and runs on a 300-MHz clock frequency, dissipates as much as 50 W of power. Such high power consumption requires expensive packaging and cooling techniques given that insufficient cooling leads to high operating temperatures, which tend to exacerbate several silicon failure mechanisms. To maintain the reliability of their products, and avoid expensive packaging and cooling techniques, manufacturers are now under strong pressure to control, if not reduce, the power dissipation of their products.

Finally, due to the increasing percentage of electrical energy usage for computing and communication in the modern workplace, low-power design is in line with the increasing global awareness of environmental concerns. As a result, power has emerged as one of the most important design and performance parameters for integrated circuits. Only a few years ago, the power dissipation of a circuit was of secondary importance to such design issues as performance and area. The performance of a digital system is usually measured only in terms of the number of instructions it can carry out in a given amount of time, that is, its throughput. The area required to implement a circuit is also important as it is directly related to the fabrication cost of the chip. Larger die areas lead to more expensive packaging and lower fabrication yield. Both effects translate to higher cost. Because the performance of a system is usually improved at the expense of silicon area, a major task for integrated chip (IC) designers in the past was to achieve an optimal balance between these two often-conflicting objectives. Now, with the rising importance of power, this balance is no longer sufficient. Today, IC designers must design circuits with low-power dissipation without severely compromising the circuits' performance.

Clearly, power has become a major consideration in VLSI and giga-scale-integration (GSI) engineering due to portability, reliability, cost, and environmental concerns. The BiCMOS technology that combines the low-power dissipation and high packing density of CMOS with the high-speed and high-output drive of bipolar devices has proven to be an excellent workhorse for portable as well as nonportable applications. For many years to come, device miniaturization together with the search for even lower power and lower voltage requirements will continue. To cater to such an ever-increasing demand, the CMOS/BiCMOS technology shall be the answer.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020