Home > Articles > Security > Software Security

  • Print
  • + Share This
This chapter is from the book

Data Integrity

At a much lesser cost than encrypting a plaintext in its entirety, both services of data integrity and origin authentication can be afforded by a secret cryptographic scheme using a Message Authentication Code (MAC). Its main component is the digest function.

Hash Functions

By definition a hash function is a deterministic function that maps a message of arbitrary length to a fixed length string (e.g., 128 or 160 bits) commonly known as a message digest [MERK79, PREN93]. Hash functions are considered to be one of the fundamental primitives in modern cryptography. For a function H to be a hash function, it should satisfy the following properties:

  • For an arbitrary input p, it is easy to compute h = H(p)

  • It is computationally infeasible to compute the inverse p = H–1(h), a property that attributes the hash function the one-way hash function name

  • It is also computationally infeasible to determine p' such that H(p) = H(p'), a property know as collision resistance

The collision resistance characteristic of a hash function is further enhanced by having the function satisfy a property whereby the probability that a randomly picked stream of bytes is mapped to a known n-bit hash-value is 2(–n).

The fundamental premise here is that the hash value becomes, depending upon the strength of the hashing algorithm, a compact representation of the original data; hence hash value is sometimes referred to as fingerprint. In modern cryptography hash functions are commonly used in providing digital signatures of documents, data integrity, and data origin authentication.

MD5 [RIVE92] and SHA-1 [SHS95] are the most widely used cryptographic hash functions. MD5 yields a 128-bit hash value; SHA-1 results in a 160-bit digest. SHA-1 appears to be a cryptographically stronger function as it presents an enhancement over MD5 and is more resistant to brute force attacks. On the other hand, MD5 edges SHA-1 in computational performance.

The combination of a hash function and a secret key cryptographic scheme yields a MAC, which enables both data integrity and data origin authenticity. In contrast to imply using a hash function to digest a message as is the case in Modification Detection Codes (MDC), the keyed MAC hashing function yields a value that can only be verified by an entity having knowledge of the secret key.

MAC Examples

One simple method of turning a one-way hash function into a MAC is to encrypt the resulting hash value with a secret-key block algorithm. Similarly, a MAC can be computed by solely using a symmetric block algorithm in a mode such as the cipher block chaining (CBC) [FIPS81]. In this mode we start with a randomly chosen block of data as an initial vector. We perform the XOR of the initial vector with the first block to be encrypted. Then we encrypt the block. The procedure is repeated for the next block using the block that was encrypted last as an initial vector. The cascading nature of this chained feedback is shown in Figure 1.8. The last ciphertext block is encrypted once more in CBC mode, yielding the final MAC value. Known instances of this procedure employ DES and triple DES resulting in DES-MAC and Triple-DES-MAC, respectively.

Figure 1.8FIGURE 1.8 Feedback chaining in a CBC-based MAC algorithm


Other methods of constructing MACs rely solely on keyed one-way hash functions. One simple example would be to prefix or suffix the data to be digested with a secret key. The result is then subjected to the hashing transformation. Another variation consists of prefixing and suffixing the data to be digested with the key. Additionally, a more reliable version of such a method includes the length of the data to digest while computing the hash value.

A common method in this category is the keyed hashing for message authentication known as HMAC [KRAW97]. The HMAC algorithm is described using a generic iterative hash function H. In practice, however, it has been employed mostly with MD5 and SHA-1.

Let's denote by b the block length of the underlying hash function's input block (64 for both MD5 and SHA-1). The following inner and outer padding values are defined:

  • innerPad = the byte 0 x 36 repeated b times

  • outerPad = the byte 0 x 5C repeated b times.

To compute HMAC over an input p we perform:

H((K XOR outerPad) || H( (K XOR innerPad) || p)),

where || denotes string concatenation. This computation breaks into the following steps:.

  1. Append zeros to the end of K to create a b byte string

  2. XOR the b byte string computed in step (1)with innerPad

  3. Append the stream p to the b-byte string resulting from step (2)

  4. Apply H to the stream generated in step append (3)

  5. XOR the b byte string computed in step (1)with outerPad

  6. Append the H result from step (4)to the b byte string resulting from step (5)

  7. Apply H to the stream generated in step (6)and output the result

The effective contribution to the final hash value is accumulated in accordance to function H. The procedure is then iteratively applied to each of the remaining blocks.

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020