Home > Articles > Data > Access

This chapter is from the book

Introduction to Relational Database Design

Many people believe that Access is such a simple product to use, that database design is something they don't need to worry about. I couldn't disagree more! Just as a house without a foundation will fall over, a database with poorly designed tables and relationships will fail to meet the needs of the users.

The History of Relational Database Design

Dr. E.F. Codd first introduced formal relational database design in 1969 while he was at IBM. It is based on set theory and predicate logic. Relational theory applies to both databases and database applications. Codd developed 12 rules that determine how well an application and its data adhere to the relational model. Since Codd first conceived these 12 rules, the number of rules has expanded into the hundreds!

You should be happy to learn that, as an application development environment, although not perfect, Microsoft Access measures up quite well as a relational database system.

Goals of Relational Database Design

The number one goal of relational database design is to, as closely as possible, develop a database that models some real-world system. This involves breaking the real-world system into tables and fields, and determining how the tables relate to each other. Although, on the surface, this might appear to be a trivial task, it can be an extremely cumbersome process to translate a real-world system into tables and fields.

A properly designed database has many benefits. The process of adding, editing, deleting, and retrieving table data is greatly facilitated by a properly designed database. Reports are easy to build. Most importantly, the database becomes easy to modify and maintain.

Rules of Relational Database Design

To adhere to the relational model, certain rules must be followed. These rules determine what is stored in a table, and how the tables are related.

The Rules of Tables

Each table in a system must store data about a single entity. An entity usually represents a real-life object or event. Examples of objects are customers, employees, and inventory items. Examples of events include orders, appointments, and doctor visits.

The Rules of Uniqueness and Keys

Tables are composed of rows and columns. To adhere to the relational model, each table must contain a unique identifier. Without a unique identifier, it becomes programmatically impossible to uniquely address a row. You guarantee uniqueness in a table by designating a primary key, which is a single column or a set of columns that uniquely identifies a row in a table.

Each column or set of columns in a table that contains unique values is considered a candidate key. One candidate key becomes the primary key. The remaining candidate keys become alternate keys. A primary key made up of one column is considered a simple key. A primary key comprised of multiple columns is considered a composite key.

It is generally a good idea to pick a primary key that is

  • Minimal (has as few columns as possible)

  • Stable (rarely changes)

  • Simple (familiar to the user)

Following these rules greatly improves the performance and maintainability of your database application, particularly if you are dealing with large volumes of data.

Consider the example of an employee table. An employee table is generally composed of employee-related fields such as social security number, first name, last name, hire date, salary, and so on. The combination of the first name and the last name fields could be considered a primary key. This choice might work, until the company hires two employees with the same name. Although the first and last names could be combined with additional fields to constitute uniqueness (for example, hire date), this would violate the rule of keeping the primary key minimal. Furthermore, an employee might get married and her last name might change.

Using a name as the primary key violates the principle of stability. The social security number might be a valid choice, but a foreign employee might not have a social security number. This is a case where a derived, rather than a natural, primary key is appropriate. A derived key is an artificial key that you create. A natural key is one that is already part of the database.

I would suggest adding EmployeeID as an AutoNumber field. Although the field would violate the rule of simplicity (because an employee number is meaningless to the user), it is both small and stable. Because it is numeric, it is also efficient to process. In fact, I use AutoNumber fields (an identity field in SQL Server) as primary keys for most of the tables that I build.

Foreign Keys and Domains

A foreign key in a table is the field that relates to the primary key in a second table. For example, the CustomerID is the primary key in the Customers table. It is the foreign key in the Orders table.

A domain is a pool of values from which columns are drawn. A simple example of a domain is the specific data range of employee hire dates. In the case of the Order table, the domain of the CustomerID column is the range of values for the CustomerID in the Customers table.

Normalization and Normal Forms

One of the most difficult decisions that you face as a developer is what tables to create, and what fields to place in each table, as well as how to relate the tables that you create. Normalization is the process of applying a series of rules to ensure that your database achieves optimal structure. Normal forms is a progression of these rules. Each successive normal form achieves a better database design than the previous form did. Although there are several levels of normal forms, it is generally sufficient to apply only the first three levels of normal forms. They are described in the following sections.

First Normal Form

To achieve first normal form, all columns in a table must be atomic. This means, for example, that you cannot store first name and last name in the same field. The reason for this rule is that data becomes very difficult to manipulate and retrieve if multiple values are stored in a single field. Using the full name as an example, it would become impossible to sort by first name or last name independently if both values are stored in the same field. Furthermore, extra work must be done to extract just the first name or the last name from the field.

Another requirement for first normal form is that the table must not contain repeating values. An example of repeating values is a scenario in which Item1, Quantity1, Item2, Quantity2, Item3, and Quantity3 fields are all found within the Orders table (see Figure 3.1). This design introduces several problems. What if the user wants to add a fourth item to the order? Furthermore, finding the total ordered for a product requires searching several columns. In fact, all numeric and statistical calculations on the table become extremely cumbersome. The alternative, shown in Figure 3.2, achieves first normal form. Notice that each item ordered is located in a separate row.

Figure 3.1 This table contains repeating groups. Repeating groups make it difficult to summarize and manipulate table data.

Figure 3.2 This table achieves first normal form. Notice that all fields are atomic, and that it contains no repeating groups.

Second Normal Form

To achieve second normal form, all non-key columns must be fully dependent on the primary key. In other words, each table must store data about only one subject. Notice the table shown in Figure 3.2. It includes information about the order (OrderID, CustomerID, and OrderDate) and information about the items being ordered (Item and Quantity). To achieve second normal form, this data must be broken into two tables, an order table and an order detail table. The process of breaking the data into two tables is called decomposition. It is considered to be non-loss decomposition because no data is lost during the decomposition process. Once the data is broken into two tables, you can easily bring the data back together by joining the two tables in a query. Figure 3.3 shows the data broken up into two tables. These two tables achieve second normal form.

Figure 3.3 These tables achieve second normal form. The fields in each table pertain to the primary key of the table.

Third Normal Form

To attain third normal form, a table must meet all the requirements for first and second normal form, and all non-key columns must be mutually independent. This means that you must eliminate any calculations, and you must break out data into lookup tables.

An example of a calculation stored in a table is the product of price multiplied by quantity. Rather than storing the result of this calculation in the table, instead you would generate the calculation in a query, or in the control source of a control on a form or a report.

The example in Figure 3.3 does not achieve third normal form because the description of the inventory items is stored in the order details table. If the description changes, all rows with that inventory item need to be modified. The order detail table, shown in Figure 3.4, shows the item descriptions broken into an inventory table. This design achieves third normal form. All fields are mutually independent. The description of an inventory item can be modified in one place.

Denormalization—Purposely Violating the Rules

Although the developer's goal is normalization, there are many times when it makes sense to deviate from normal forms. This process is referred to as denormalization. The primary reason for applying denormalization is to enhance performance.

Figure 3.4 This table achieves third normal form. The description of the inventory items is moved to an inventory table, and the ItemID is stored in the order details table.

An example of when denormalization might be the preferred tact could involve an open invoices table and a summarized accounting table. It might be impractical to calculate summarized accounting information for a customer when it is needed. The summary calculations are maintained in a summarized accounting table so that they are easily retrieved as needed. Although the upside of this scenario is improved performance, the downside is that the summary table must be updated whenever changes are made to the open invoices. This imposes a definite trade-off between performance and maintainability. You must decide whether the trade-off is worth it.

If you decide to denormalize, document your decision. Make sure that you make the necessary application adjustments to ensure that the denormalized fields are properly maintained. Finally, test to ensure that performance is actually improved by the denormalization process.

Integrity Rules

Although integrity rules are not part of normal forms, they are definitely part of the database design process. Integrity rules are broken into two categories. They include overall integrity rules and database-specific integrity rules.

Overall Rules

The two types of overall integrity rules are referential integrity rules and entity integrity rules. Referential integrity rules dictate that a database does not contain any orphan foreign key values. This means that

  • Child rows cannot be added for parent rows that do not exist. In other words, an order cannot be added for a nonexistent customer.

  • A primary key value cannot be modified if the value is used as a foreign key in a child table. This means that a CustomerID cannot be changed if the orders table contains rows with that CustomerID.

  • A parent row cannot be deleted if child rows are found with that foreign key value. For example, a customer cannot be deleted if the customer has orders in the order table.

Entity integrity dictates that the primary key value cannot be Null. This rule applies not only to single-column primary keys, but also to multi-column primary keys. In fact, in a multi-column primary key, no field in the primary key can be Null. This makes sense because, if any part of the primary key can be Null, the primary key can no longer act as a unique identifier for the row. Fortunately, Access does not allow a field in a primary key to be Null.

Database-Specific Rules

The other set of rules applied to a database are not applicable to all databases, but are, instead, dictated by business rules that apply to a specific application. Database-specific rules are as important as overall integrity rules. They ensure that only valid data is entered into a database. An example of a database-specific integrity rule is that the delivery date for an order must fall after the order date.

Examining the Types of Relationships

Three types of relationships can exist between tables in a database: one-to-many, one-to-one, and many-to-many. Setting up the proper type of relationship between two tables in your database is imperative. The right type of relationship between two tables ensures

  • Data integrity

  • Optimal performance

  • Ease of use in designing system objects

The reasons behind these benefits are covered throughout this chapter. Before you can understand the benefits of relationships, though, you must understand the types of relationships available.


A one-to-many relationship is by far the most common type of relationship. In a one-to-many relationship, a record in one table can have many related records in another table. A common example is a relationship set up between a Customers table and an Orders table. For each customer in the Customers table, you want to have more than one order in the Orders table. On the other hand, each order in the Orders table can belong to only one customer. The Customers table is on the one side of the relationship, and the Orders table is on the many side. In order for this relationship to be implemented, the field joining the two tables on the one side of the relationship must be unique.

In the Customers and Orders tables example, the CustomerID field that joins the two tables must be unique within the Customers table. If more than one customer in the Customers table has the same customer ID, it is not clear which customer belongs to an order in the Orders table. For this reason, the field that joins the two tables on the one side of the one-to-many relationship must be a primary key or have a unique index. In almost all cases, the field relating the two tables is the primary key of the table on the one side of the relationship. The field relating the two tables on the many side of the relationship is called a foreign key.


In a one-to-one relationship, each record in the table on the one side of the relationship can have only one matching record in the table on the many side of the relationship. This relationship is not common and is used only in special circumstances. Usually, if you have set up a one-to-one relationship, you should have combined the fields from both tables into one table. The following are the most common reasons why you should create a one-to-one relationship:

  • The amount of fields required for a table exceeds the number of fields allowed in an Access table.

  • Certain fields that are included in a table need to be much more secure than other fields included in the same table.

  • Several fields in a table are required for only a subset of records in the table.

The maximum number of fields allowed in an Access table is 255. There are very few reasons why a table should ever have more than 255 fields. In fact, before you even get close to 255 fields, you should take a close look at the design of your system. On the rare occasion when having more than 255 fields is appropriate, you can simulate a single table by moving some of the fields to a second table and creating a one-to-one relationship between the two tables.

The second reason to separate into two tables data that logically would belong in the same table involves security. An example is a table containing employee information. Certain information, such as employee name, address, city, state, ZIP Code, home phone, and office extension, might need to be accessed by many users of the system. Other fields, including the hire date, salary, birth date, and salary level, might be highly confidential. Field-level security is not available in Access. You can simulate field-level security by using a special attribute of queries called Run with Owner's permissions. This feature is covered in Chapter 11, "Advanced Query Techniques."

The alternative to this method is to place all the fields that can be accessed by all users in one table and the highly confidential fields in another. Only a special Admin user (a user with special security privileges, not one actually named Admin) is given access to the table containing the confidential fields. ActiveX Data Objects (ADO) code is used to display the fields in the highly confidential table when needed. This is done using a query with Run with Owner's permissions, based on the special Admin user's permission to the highly secured table. This technique is covered in Chapter 28, "Advanced Security Techniques."


If your application utilizes data stored in a SQL Server database, you can use views to easily accomplish the task of implementing field-level security. In such an environment, the process of splitting the data into two tables is unnecessary.

The last situation in which you would want to define one-to-one relationships is when certain fields in a table are going to be used for only a relatively small subset of records. An example is an Employee table and a Vesting table. Certain fields are required only for employees who are vested. If only a small percentage of a company's employees are vested, it is not efficient, in terms of performance or disk space, to place all the fields containing information about vesting in the Employee table. This is especially true if the vesting information requires a large volume of fields. By breaking the information into two tables and creating a one-to-one relationship between them, you can reduce disk-space requirements and improve performance. This improvement is particularly pronounced if the Employee table is large.


In a many-to-many relationship, records in both tables have matching records in the other table. A many-to-many relationship cannot be directly defined in Access; you must develop this type of relationship by adding a table called a junction table. The junction table is related to each of the two tables in one-to-many relationships. An example is an Orders table and a Products table. Each order probably will contain multiple products, and each product is found on many different orders. The solution is to create a third table called Order Details. The Order Details table is related to the Orders table in a one-to-many relationship based on the OrderID field. It is related to the Products table in a one-to-many relationship based on the ProductID field.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020