Home > Articles > Engineering > Communications Engineering

  • Print
  • + Share This
This chapter is from the book

1.5 Outline of This Textbook

This book is organized to allow the engineering practitioner, researcher, or student to rapidly find useful information on specific topics that are central to the infant world of mmWave wireless communications, including the nascent but commercially viable world of 60 GHz communication. Each chapter begins with an introduction that previews the material in each section and is completed with a summary that reviews salient points of each topic discussed. Chapter 1 serves as an introduction to the entire book, and motivates the study of mmWave communication.

Chapter 2 provides background material for wireless communication system design. This chapter begins with an introduction to the complex baseband signal representation and its relationship to the wireless medium that provides the physical channel for communication. Then, using the complex baseband model, the design of discrete-time wireless communication systems to send and receive information through the transmission of data symbols is discussed. This includes a summary of equalization concepts to deal with channel distortion effects and error-correcting codes to deal with degradations due to impairments in the channel and communication hardware. A special section is included on Orthogonal Frequency Division Multiplexing (OFDM) modulation, which is popular in many commercial standards such as 4G LTE and IEEE 802.11n. Finally, Chapter 2 concludes with implementation topics including the estimation and detection of signals at the receiver, the architecture used for RF/analog/digital circuits in a communication system, and the layering of a communication system.

Chapter 3 transitions into the fundamentals of mmWave propagation and summarizes the physical characteristics of the wireless channel at operating frequencies around 60 GHz and other mmWave frequencies. This chapter consists of several different aspects of the wireless channel, each of which builds a complete picture of a mmWave wireless channel model. New results for the 28, 38, and 73 GHz outdoor urban cellular environments are given in this chapter, and they demonstrate the improvements that adaptive antennas can make in both link budget and reduction of multipath delay spread. First, measurement results that characterize the large-scale path loss are summarized. Then the penetration/reflection ability of mmWave signals is reviewed, which will be important to determine the feasibility of NLOS communication. A special section is devoted to the loss experienced by mmWave signals due to atmospheric effects such as energy absorption of oxygen and water molecules. Ray tracing is also described, as this approach will be critical for accurate site selection and deployment of future mmWave systems, where both indoor and outdoor channel conditions are considered. Finally, the indoor and outdoor mmWave channels are summarized in terms of their temporal, spectral, and spatial characteristics with respect to realistic mobility scenarios.

Chapter 4 provides background on antenna theory with an emphasis on techniques that are relevant for mmWave communication: in-package and on-chip antennas. The high cable losses at mmWave frequencies motivate pushing the antennas as close to the signal processing as possible. An in-package integrated antenna is one that is manufactured as part of the packaging process whereas an on-chip antenna is one that is built as part of the semiconductor process. Cost savings can potentially be realized with on-chip antennas if research can provide designs of high efficiency. Potential antenna topologies for mmWave are reviewed including planar, lens, aperture, and array antennas. Although many classic textbooks have dealt with the important area of antennas, we focus on the key concepts that are vital for on-chip and in-package antennas that will be used in mmWave consumer electronic products in the future. Also, array theory and fundamental semiconductor properties are treated, so readers can understand the challenges and approaches for implementing on-chip antennas. Although these approaches are nascent, and far from perfected at the time of this writing, future integrated wireless devices operating in the 30-300 GHz range will likely rely on tight integration not used at conventional UHF microwave bands. The chapter concludes with a survey of classical results on array processing, which are relevant for mmWave using adaptive antenna arrays.

Chapter 5 describes semiconductor device basics and enumerates the hardware design challenges at mmWave carrier frequencies. This includes a discussion of the RF hardware design issues including antenna design and amplifier design in the front end. Amplifier design is summarized by first presenting the challenges associated with characterizing and measuring mmWave signals. To address these challenges, S-parameters and Y-parameters are defined, and the design/cost issues that surface with different technologies including GaAs, InP, SiGe, and CMOS are interpreted. Circuit design at traditional frequencies (<10 GHz) takes advantage of lumped element assumptions because circuit dimensions are much smaller than the wavelength of the carrier frequency. Unfortunately, with mmWave frequencies, these assumptions cannot be made. This problem is discussed in detail via transmission line modeling followed by a summary of the design of passive and active elements in mmWave circuits. The key analog circuit components of mmWave transceivers are covered in detail in Chapter 5, and the chapter concludes with a novel and powerful figure of merit, the consumption factor, for determining and comparing power efficiencies for any mmWave circuit or system.

Chapter 6 discusses digital baseband issues. Much of the discussion is devoted to analog-to-digital conversion (ADC) and digital-to-analog conversion (DAC), as this consumes a substantial amount of power in mmWave circuit implementations. The impact of device fabrication mismatch, design architectures, fundamentals of DAC and ADC circuit design, and promising techniques for achieving multi-Gbps sampling and signal reproduction are given in this chapter.

Chapter 7 presents the design and applications of mmWave systems through a summary of 60 GHz PHY algorithms. The design of 60 GHz baseband algorithms is intrinsically linked to the wireless channel and hardware constraints discussed in Chapters 3 through 6. This relationship between the constraints and the PHY design is presented in the beginning of this chapter. Following this discussion, PHY design rules within these constraints are offered through sections on modulation, coding, and channel equalization. This chapter ends with a section that analyzes the impact of future/emerging hardware technology and its ability to relax certain design constraints for mmWave PHYs.

Chapter 8 reviews higher layer (above the PHY) design issues for mmWave systems with a particular emphasis on techniques relevant to 60 GHz and emerging cellular and backhaul systems. The use of directional beam steering, the limited coverage of mmWave signal propagation, and sensitivity to effects like human blockage of dominant signal paths present challenges that must be addressed at higher layers. This chapter reviews the key problems from a higher layer-perspective then expands on select topics in more detail. First, the incorporation of beam steering into a MAC protocol is described in more detail. Then, multihop operation using relays is reviewed as a way to achieve better coverage and to provide resilience to human blockages. Next, because multimedia is an important application for indoor systems, the cross-layer incorporation of video using unequal error protection is described in more detail. Finally, multiband strategies are discussed in which low frequency control signals are used to make network establishment and management easier.

Chapter 9 concludes the technical content of this text with a review of design elements from the standardization efforts for 60 GHz wireless communication systems. Three different WPAN standards are presented including IEEE 802.15.3c for WPAN, Wireless HD for uncompressed high-definition video streaming, and ECMA-387. Each of these WPAN standards has a distinct approach to the physical and MAC layer of the wireless communication system design, and these differences will be highlighted in this chapter. Two different WLAN standards are also presented including IEEE 802.11ad and WiGig (from which IEEE 802.11ad was based), which stretch WLAN into gigabit capabilities through 60 GHz spectrum.

1.5.1 Illustrations for this Textbook

You can find the color versions of the illustrations in this book at informit. com/title/9780132172288.

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020