Home > Articles > Programming > Java

Introduction to the Java Language Specification

This chapter covers the organization of the Java Language Specification, example programs, notation, and relationship to predefined classes and interfaces.

Read The Java Language Specification, Java SE 7 Edition, Fourth Edition or more than 24,000 other books and videos on Safari Books Online. Start a free trial today.



This chapter is from the book

The Java® programming language is a general-purpose, concurrent, class-based, object-oriented language. It is designed to be simple enough that many programmers can achieve fluency in the language. The Java programming language is related to C and C++ but is organized rather differently, with a number of aspects of C and C++ omitted and a few ideas from other languages included. It is intended to be a production language, not a research language, and so, as C. A. R. Hoare suggested in his classic paper on language design, the design has avoided including new and untested features.

The Java programming language is strongly and statically typed. This specification clearly distinguishes between the compile-time errors that can and must be detected at compile time, and those that occur at run time. Compile time normally consists of translating programs into a machine-independent byte code representation. Run-time activities include loading and linking of the classes needed to execute a program, optional machine code generation and dynamic optimization of the program, and actual program execution.

The Java programming language is a relatively high-level language, in that details of the machine representation are not available through the language. It includes automatic storage management, typically using a garbage collector, to avoid the safety problems of explicit deallocation (as in C’s free or C++’s delete). High-performance garbage-collected implementations can have bounded pauses to support systems programming and real-time applications. The language does not include any unsafe constructs, such as array accesses without index checking, since such unsafe constructs would cause a program to behave in an unspecified way.

The Java programming language is normally compiled to the bytecoded instruction set and binary format defined in The Java Virtual Machine Specification, Java SE 7 Edition.

1.1. Organization of the Specification

Chapter 2 describes grammars and the notation used to present the lexical and syntactic grammars for the language.

Chapter 3 describes the lexical structure of the Java programming language, which is based on C and C++. The language is written in the Unicode character set. It supports the writing of Unicode characters on systems that support only ASCII.

Chapter 4 describes types, values, and variables. Types are subdivided into primitive types and reference types.

The primitive types are defined to be the same on all machines and in all implementations, and are various sizes of two’s-complement integers, single- and double-precision IEEE 754 standard floating-point numbers, a boolean type, and a Unicode character char type. Values of the primitive types do not share state.

Reference types are the class types, the interface types, and the array types. The reference types are implemented by dynamically created objects that are either instances of classes or arrays. Many references to each object can exist. All objects (including arrays) support the methods of the class Object, which is the (single) root of the class hierarchy. A predefined String class supports Unicode character strings. Classes exist for wrapping primitive values inside of objects. In many cases, wrapping and unwrapping is performed automatically by the compiler (in which case, wrapping is called boxing, and unwrapping is called unboxing). Class and interface declarations may be generic, that is, they may be parameterized by other reference types. Such declarations may then be invoked with specific type arguments.

Variables are typed storage locations. A variable of a primitive type holds a value of that exact primitive type. A variable of a class type can hold a null reference or a reference to an object whose type is that class type or any subclass of that class type. A variable of an interface type can hold a null reference or a reference to an instance of any class that implements the interface. A variable of an array type can hold a null reference or a reference to an array. A variable of class type Object can hold a null reference or a reference to any object, whether class instance or array.

Chapter 5 describes conversions and numeric promotions. Conversions change the compile-time type and, sometimes, the value of an expression. These conversions include the boxing and unboxing conversions between primitive types and reference types. Numeric promotions are used to convert the operands of a numeric operator to a common type where an operation can be performed. There are no loopholes in the language; casts on reference types are checked at run time to ensure type safety.

Chapter 6 describes declarations and names, and how to determine what names mean (denote). The language does not require types or their members to be declared before they are used. Declaration order is significant only for local variables, local classes, and the order of initializers of fields in a class or interface.

The Java programming language provides control over the scope of names and supports limitations on external access to members of packages, classes, and interfaces. This helps in writing large programs by distinguishing the implementation of a type from its users and those who extend it. Recommended naming conventions that make for more readable programs are described here.

Chapter 7 describes the structure of a program, which is organized into packages similar to the modules of Modula. The members of a package are classes, interfaces, and subpackages. Packages are divided into compilation units. Compilation units contain type declarations and can import types from other packages to give them short names. Packages have names in a hierarchical name space, and the Internet domain name system can usually be used to form unique package names.

Chapter 8 describes classes. The members of classes are classes, interfaces, fields (variables) and methods. Class variables exist once per class. Class methods operate without reference to a specific object. Instance variables are dynamically created in objects that are instances of classes. Instance methods are invoked on instances of classes; such instances become the current object this during their execution, supporting the object-oriented programming style.

Classes support single implementation inheritance, in which the implementation of each class is derived from that of a single superclass, and ultimately from the class Object. Variables of a class type can reference an instance of that class or of any subclass of that class, allowing new types to be used with existing methods, polymorphically.

Classes support concurrent programming with synchronized methods. Methods declare the checked exceptions that can arise from their execution, which allows compile-time checking to ensure that exceptional conditions are handled. Objects can declare a finalize method that will be invoked before the objects are discarded by the garbage collector, allowing the objects to clean up their state.

For simplicity, the language has neither declaration “headers” separate from the implementation of a class nor separate type and class hierarchies.

A special form of classes, enums, support the definition of small sets of values and their manipulation in a type safe manner. Unlike enumerations in other languages, enums are objects and may have their own methods.

Chapter 9 describes interface types, which declare a set of abstract methods, member types, and constants. Classes that are otherwise unrelated can implement the same interface type. A variable of an interface type can contain a reference to any object that implements the interface. Multiple interface inheritance is supported.

Annotation types are specialized interfaces used to annotate declarations. Such annotations are not permitted to affect the semantics of programs in the Java programming language in any way. However, they provide useful input to various tools.

Chapter 10 describes arrays. Array accesses include bounds checking. Arrays are dynamically created objects and may be assigned to variables of type Object. The language supports arrays of arrays, rather than multidimensional arrays.

Chapter 11 describes exceptions, which are nonresuming and fully integrated with the language semantics and concurrency mechanisms. There are three kinds of exceptions: checked exceptions, run-time exceptions, and errors. The compiler ensures that checked exceptions are properly handled by requiring that a method or constructor can result in a checked exception only if the method or constructor declares it. This provides compile-time checking that exception handlers exist, and aids programming in the large. Most user-defined exceptions should be checked exceptions. Invalid operations in the program detected by the Java Virtual Machine result in run-time exceptions, such as NullPointerException. Errors result from failures detected by the Java Virtual Machine, such as OutOfMemoryError. Most simple programs do not try to handle errors.

Chapter 12 describes activities that occur during execution of a program. A program is normally stored as binary files representing compiled classes and interfaces. These binary files can be loaded into a Java Virtual Machine, linked to other classes and interfaces, and initialized.

After initialization, class methods and class variables may be used. Some classes may be instantiated to create new objects of the class type. Objects that are class instances also contain an instance of each superclass of the class, and object creation involves recursive creation of these superclass instances.

When an object is no longer referenced, it may be reclaimed by the garbage collector. If an object declares a finalizer, the finalizer is executed before the object is reclaimed to give the object a last chance to clean up resources that would not otherwise be released. When a class is no longer needed, it may be unloaded.

Chapter 13 describes binary compatibility, specifying the impact of changes to types on other types that use the changed types but have not been recompiled. These considerations are of interest to developers of types that are to be widely distributed, in a continuing series of versions, often through the Internet. Good program development environments automatically recompile dependent code whenever a type is changed, so most programmers need not be concerned about these details.

Chapter 14 describes blocks and statements, which are based on C and C++. The language has no goto statement, but includes labeled break and continue statements. Unlike C, the Java programming language requires boolean (or Boolean) expressions in control-flow statements, and does not convert types to boolean implicitly (except through unboxing), in the hope of catching more errors at compile time. A synchronized statement provides basic object-level monitor locking. A try statement can include catch and finally clauses to protect against non-local control transfers.

Chapter 15 describes expressions. This document fully specifies the (apparent) order of evaluation of expressions, for increased determinism and portability. Overloaded methods and constructors are resolved at compile time by picking the most specific method or constructor from those which are applicable.

Chapter 16 describes the precise way in which the language ensures that local variables are definitely set before use. While all other variables are automatically initialized to a default value, the Java programming language does not automatically initialize local variables in order to avoid masking programming errors.

Chapter 17 describes the semantics of threads and locks, which are based on the monitor-based concurrency originally introduced with the Mesa programming language. The Java programming language specifies a memory model for shared-memory multiprocessors that supports high-performance implementations.

Chapter 18 presents a syntactic grammar for the language.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020