Home > Articles > Programming > Java

  • Print
  • + Share This
This chapter is from the book

2.3. Primitive Types and Values

The primitive data types supported by the Java Virtual Machine are the numeric types, the boolean type (§2.3.4), and the returnAddress type (§2.3.3).

The numeric types consist of the integral types (§2.3.1) and the floating-point types (§2.3.2).

The integral types are:

  • byte, whose values are 8-bit signed two’s-complement integers, and whose default value is zero
  • short, whose values are 16-bit signed two’s-complement integers, and whose default value is zero
  • int, whose values are 32-bit signed two’s-complement integers, and whose default value is zero
  • long, whose values are 64-bit signed two’s-complement integers, and whose default value is zero
  • char, whose values are 16-bit unsigned integers representing Unicode code points in the Basic Multilingual Plane, encoded with UTF-16, and whose default value is the null code point (’\u0000’)

The floating-point types are:

  • float, whose values are elements of the float value set or, where supported, the float-extended-exponent value set, and whose default value is positive zero
  • double, whose values are elements of the double value set or, where supported, the double-extended-exponent value set, and whose default value is positive zero

The values of the boolean type encode the truth values true and false, and the default value is false.

  • The Java Virtual Machine Specification, First Edition did not consider boolean to be a Java Virtual Machine type. However, boolean values do have limited support in the Java Virtual Machine. The Java Virtual Machine Specification, Second Edition clarified the issue by treating boolean as a type.

The values of the returnAddress type are pointers to the opcodes of Java Virtual Machine instructions. Of the primitive types, only the returnAddress type is not directly associated with a Java programming language type.

2.3.1. Integral Types and Values

The values of the integral types of the Java Virtual Machine are:

  • For byte, from -128 to 127 (-27 to 27 - 1), inclusive
  • For short, from -32768 to 32767 (-215 to 215 - 1), inclusive
  • For int, from -2147483648 to 2147483647 (-231 to 231 - 1), inclusive
  • For long, from -9223372036854775808 to 9223372036854775807 (-263 to 263 - 1), inclusive
  • For char, from 0 to 65535 inclusive

2.3.2. Floating-Point Types, Value Sets, and Values

The floating-point types are float and double, which are conceptually associated with the 32-bit single-precision and 64-bit double-precision format IEEE 754 values and operations as specified in IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std. 754-1985, New York).

The IEEE 754 standard includes not only positive and negative sign-magnitude numbers, but also positive and negative zeros, positive and negative infinities, and a special Not-a-Number value (hereafter abbreviated as “NaN”). The NaN value is used to represent the result of certain invalid operations such as dividing zero by zero.

Every implementation of the Java Virtual Machine is required to support two standard sets of floating-point values, called the float value set and the double value set. In addition, an implementation of the Java Virtual Machine may, at its option, support either or both of two extended-exponent floating-point value sets, called the float-extended-exponent value set and the double-extended-exponent value set. These extended-exponent value sets may, under certain circumstances, be used instead of the standard value sets to represent the values of type float or double.

The finite nonzero values of any floating-point value set can all be expressed in the form s · m · 2(eN + 1), where s is +1 or −1, m is a positive integer less than 2N, and e is an integer between Emin = −(2K−1−2) and Emax = 2K−1−1, inclusive, and where N and K are parameters that depend on the value set. Some values can be represented in this form in more than one way; for example, supposing that a value v in a value set might be represented in this form using certain values for s, m, and e, then if it happened that m were even and e were less than 2K-1, one could halve m and increase e by 1 to produce a second representation for the same value v. A representation in this form is called normalized if m ≥ 2N-1; otherwise the representation is said to be denormalized. If a value in a value set cannot be represented in such a way that m ≥ 2N-1, then the value is said to be a denormalized value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters Emin and Emax) for the two required and two optional floating-point value sets are summarized in Table 2.1.

Table 2.1. Floating-point value set parameters

Parameter

float

float-extended-exponent

double

double-extended-exponent

N

24

24

53

53

K

8

≥ 11

11

≥ 15

Emax

+127

≥ +1023

+1023

≥ +16383

Emin

-126

≤ -1022

-1022

≤ -16382

Where one or both extended-exponent value sets are supported by an implementation, then for each supported extended-exponent value set there is a specific implementation-dependent constant K, whose value is constrained by Table 2.1; this value K in turn dictates the values for Emin and Emax.

Each of the four value sets includes not only the finite nonzero values that are ascribed to it above, but also the five values positive zero, negative zero, positive infinity, negative infinity, and NaN.

Note that the constraints in Table 2.1 are designed so that every element of the float value set is necessarily also an element of the float-extended-exponent value set, the double value set, and the double-extended-exponent value set. Likewise, each element of the double value set is necessarily also an element of the double-extended-exponent value set. Each extended-exponent value set has a larger range of exponent values than the corresponding standard value set, but does not have more precision.

The elements of the float value set are exactly the values that can be represented using the single floating-point format defined in the IEEE 754 standard, except that there is only one NaN value (IEEE 754 specifies 224-2 distinct NaN values). The elements of the double value set are exactly the values that can be represented using the double floating-point format defined in the IEEE 754 standard, except that there is only one NaN value (IEEE 754 specifies 253-2 distinct NaN values). Note, however, that the elements of the float-extended-exponent and double-extended-exponent value sets defined here do not correspond to the values that can be represented using IEEE 754 single extended and double extended formats, respectively. This specification does not mandate a specific representation for the values of the floating-point value sets except where floating-point values must be represented in the class file format (§4.4.4, §4.4.5).

The float, float-extended-exponent, double, and double-extended-exponent value sets are not types. It is always correct for an implementation of the Java Virtual Machine to use an element of the float value set to represent a value of type float; however, it may be permissible in certain contexts for an implementation to use an element of the float-extended-exponent value set instead. Similarly, it is always correct for an implementation to use an element of the double value set to represent a value of type double; however, it may be permissible in certain contexts for an implementation to use an element of the double-extended-exponent value set instead.

Except for NaNs, values of the floating-point value sets are ordered. When arranged from smallest to largest, they are negative infinity, negative finite values, positive and negative zero, positive finite values, and positive infinity.

Floating-point positive zero and floating-point negative zero compare as equal, but there are other operations that can distinguish them; for example, dividing 1.0 by 0.0 produces positive infinity, but dividing 1.0 by -0.0 produces negative infinity.

NaNs are unordered, so numerical comparisons and tests for numerical equality have the value false if either or both of their operands are NaN. In particular, a test for numerical equality of a value against itself has the value false if and only if the value is NaN. A test for numerical inequality has the value true if either operand is NaN.

2.3.3. The returnAddress Type and Values

The returnAddress type is used by the Java Virtual Machine’s jsr, ret, and jsr_w instructions (§jsr, §ret, §jsr_w). The values of the returnAddress type are pointers to the opcodes of Java Virtual Machine instructions. Unlike the numeric primitive types, the returnAddress type does not correspond to any Java programming language type and cannot be modified by the running program.

2.3.4. The boolean Type

Although the Java Virtual Machine defines a boolean type, it only provides very limited support for it. There are no Java Virtual Machine instructions solely dedicated to operations on boolean values. Instead, expressions in the Java programming language that operate on boolean values are compiled to use values of the Java Virtual Machine int data type.

The Java Virtual Machine does directly support boolean arrays. Its newarray instruction (§newarray) enables creation of boolean arrays. Arrays of type boolean are accessed and modified using the byte array instructions baload and bastorebaload, §bastore).

In Oracle’s Java Virtual Machine implementation, boolean arrays in the Java programming language are encoded as Java Virtual Machine byte arrays, using 8 bits per boolean element.

The Java Virtual Machine encodes boolean array components using 1 to represent true and 0 to represent false. Where Java programming language boolean values are mapped by compilers to values of Java Virtual Machine type int, the compilers must use the same encoding.

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020