Scalability Rules: 50 Principles for Scaling Web Sites--Reduce the Equation

This chapter is all about making big architectural problems smaller and doing less work while still achieving the necessary business results.
This chapter is from the book

This chapter is from the book 

We've all been there at some point in our academic or professional careers: We stare at a complex problem and begin to lose hope. Where do we begin? How can we possibly solve the problem within the allotted time? Or in the extreme case—how do we solve it within a single lifetime? There's just too much to do, the problem is too complex, and it simply can't be solved. That's it. Pack it in. Game over...

Hold on—don't lose hope! Take a few deep breaths and channel your high school or college math teacher/professor. If you have a big hairy architectural problem, do the same thing you would do with a big hairy math equation and reduce it into easily solvable parts. Break off a small piece of the problem and break it into several smaller problems until each of the problems is easily solvable!

Our view is that any big problem, if approached properly, is really just a collection of smaller problems waiting to be solved. This chapter is all about making big architectural problems smaller and doing less work while still achieving the necessary business results. In many cases this approach actually reduces (rather than increases) the amount of work necessary to solve the problem, simplify the architecture and the solution, and end up with a much more scalable solution or platform.

As is the case with many of the chapters in Scalability Rules, the rules vary in size and complexity. Some are overarching rules easily applied to several aspects of our design. Some rules are very granular and prescriptive in their implementation to specific systems.

Rule 1—Don't Overengineer the Solution

As Wikipedia explains, overengineering falls into two broad categories.1 The first category covers products designed and implemented to exceed the useful requirements of the product. We discuss this problem briefly for completeness, but in our estimation its impact to scale is small compared to the second problem. The second category of overengineering covers products that are made to be overly complex. As we earlier implied, we are most concerned about the impact of this second category to scalability. But first, let's address the notion of exceeding requirements.

To explain the first category of overengineering, the exceeding of useful requirements, we must first make sense of the term useful, which here means simply capable of being used. For example, designing an HVAC unit for a family house that is capable of heating that house to 300 degrees Fahrenheit in outside temperatures of 0 Kelvin simply has no use for us anywhere. The effort necessary to design and manufacture such a solution is wasted as compared to a solution that might heat the house to a comfortable living temperature in environments where outside temperatures might get close to –20 degrees Fahrenheit. This type of overengineering might have cost overrun elements, including a higher cost to develop (engineer) the solution and a higher cost to implement the solution in hardware and software. It may further impact the company by delaying the product launch if the overengineered system took longer to develop than the useful system. Each of these costs has stakeholder impact as higher costs result in lower margins, and longer development times result in delayed revenue or benefits. Scope creep, or the addition of scope between initial product definition and initial product launch, is one manifestation of overengineering.

An example closer to our domain of experience might be developing an employee timecard system capable of handling a number of employees for a single company that equals or exceeds 100 times the population of Planet Earth. The probability that the Earth's population increases 100-fold within the useful life of the software is tiny. The possibility that all of those people work for a single company is even smaller. We certainly want to build our systems to scale to customer demands, but we don't want to waste time implementing and deploying those capabilities too far ahead of our need (see Rule 2).

The second category of overengineering deals with making something overly complex and making something in a complex way. Put more simply, the second category consists of either making something work harder to get a job done than is necessary, making a user work harder to get a job done than is necessary, or making an engineer work harder to understand something than is necessary. Let's dive into each of these three areas of overly complex systems.

What do we mean by making a user work harder than is necessary? The answer to this one is really pretty simple. In many cases, less is more. Many times in the pursuit of trying to make a system flexible, we strive to cram as many odd features as possible into it. Variety is not always the spice of life. Many times users just want to get from point A to point B as quickly as possible without distractions. If 99% of your market doesn't care about being able to save their blog as a .pdf file, don't build in a prompt asking them if they'd like to save it as a .pdf. If your users are interested in converting .wav files to mp3 files, they are already sold on a loss of fidelity, so don't distract them with the ability to convert to lossless compression FLAC files.

Finally we come to the notion of making software complex to understand for other engineers. Back in the day it was all the rage, and in fact there were competitions, to create complex code that would be difficult for others to understand. Sometimes this complex code would serve a purpose—it would run faster than code developed by the average engineer. More often than not the code complexity (in terms of ability to understand what it was doing due rather than a measure like cyclomatic complexity) would simply be an indication of one's "brilliance" or mastery of "kung fu." Medals were handed out for the person who could develop code that would bring senior developers to tears of acquiescence within code reviews. Complexity became the intellectual cage within which geeky code-slingers would battle for organizational dominance. It was a great game for those involved, but companies and shareholders were the ones paying for the tickets for a cage match no one cares about. For those interested in continuing in the geek fest, but in a "safe room" away from the potential stakeholder value destruction of doing it "for real," we suggest you partake in the International Obfuscated C Code Contest at www0.us.ioccc.org/main.html.

We should all strive to write code that everyone can understand. The real measure of a great engineer is how quickly that engineer can simplify a complex problem (see Rule 3) and develop an easily understood and maintainable solution. Easy to follow solutions mean that less senior engineers can more quickly come up to speed to support systems. Easy to understand solutions mean that problems can be found more quickly during troubleshooting, and systems can be restored to their proper working order in a faster manner. Easy to follow solutions increase the scalability of your organization and your solution.

A great test to determine whether something is too complex is to have the engineer in charge of solving a given complex problem present his or her solution to several engineering cohorts within the company. The cohorts should represent different engineering experience levels as well as varying tenures within the company (we make a difference here because you might have experienced engineers with very little company experience). To pass this test, each of the engineering cohorts should easily understand the solution, and each cohort should be able to describe the solution, unassisted, to others not otherwise knowledgeable about the solution. If any cohort does not understand the solution, the team should debate whether the system is overly complex.

Overengineering is one of the many enemies of scale. Developing a solution beyond that which is useful simply wastes money and time. It may further waste processing resources, increase the cost of scale, and limit the overall scalability of the system (how far that system can be scaled). Building solutions that are overly complex has a similar effect. Systems that work too hard increase your cost and limit your ultimate size. Systems that make users work too hard limit how quickly you are likely to increase users and therefore how quickly you will grow your business. Systems that are too complex to understand kill organizational productivity and the ease with which you can add engineers or add functionality to your system.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview

Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security

Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children

This site is not directed to children under the age of 13.

Marketing

Pearson may send or direct marketing communications to users, provided that

• Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
• Such marketing is consistent with applicable law and Pearson's legal obligations.
• Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
• Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out

Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

• As required by law.
• With the consent of the individual (or their parent, if the individual is a minor)
• In response to a subpoena, court order or legal process, to the extent permitted or required by law
• To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
• In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
• To investigate or address actual or suspected fraud or other illegal activities
• To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
• To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
• To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.