Home > Articles > Networking

This chapter is from the book

Real Time Streaming Protocol (RTSP)

In the modern Internet, applications are required to deliver value. One of the biggest conundrums in recent years has been the battle to actually make the Internet a viable platform for making money. As we'll see throughout the course of this book, one of the biggest drivers for delivering on the "Gold Rush" promise of Internet technologies is content. Making content attractive to end consumers to the point where they are willing to pay is a big challenge and one that has been aided by the delivery of Application layer protocols such as RTSP, which enables the delivery of real-time video and audio in variable qualities. The other Application layer protocols we've looked at so far in this chapter work in a request/response manner, whereby the client asks for some piece of content, the content is delivered using TCP or UDP, and then the client application can display the content to the user. While these mechanisms are suitable for a large number of applications in the Internet, there also exists a requirement to deliver content, be it images, audio, video, or a combination of all three, in real time. Imagine if a user were to try to watch a full-screen video file of a one-hour movie using HTTP or FTP as the Application layer protocol. The movie file might be several hundred megabytes, if not several gigabytes, in size. Even with modern broadband services deliverable to the home, this type of large file size does not fit well in the "download then play" model we saw previously.

RTSP uses a combination of reliable transmission over TCP (used for control) and best-efforts delivery over UDP (used for content) to stream content to users. By this, we mean that the file delivery can start and the client-side application can begin displaying the audio and video content before the complete file has arrived. In terms of our one-hour movie example, this means that the client can request a movie file and watch a "live" feed similar to how one would watch a TV. Along with this "on demand" type service, RTSP also enables the delivery of live broadcast content that would not be possible with traditional download and play type mechanisms.

The Components of RTSP Delivery

During our look at RTSP, we'll use the term to describe a number of protocols that work together in delivering content to the user.


RTSP is the control protocol for the delivery of multimedia content across IP networks. It is based typically on TCP for reliable delivery and has a very similar operation and syntax to HTTP. RTSP is used by the client application to communicate to the server information such as the media file being requested, the type of application the client is using, the mechanism of delivery of the file (unicast or multicast, UDP or TCP), and other important control information commands such as DESCRIBE, SETUP, and PLAY. The actual multimedia content is not typically delivered over the RTSP connection(s), although it can be interleaved if required. RTSP is analogous to the remote control of the streaming protocols.

Real Time Transport Protocol (RTP)

RTP is the protocol used for the actual transport and delivery of the real-time audio and video data. As the delivery of the actual data for audio and video is typically delay sensitive, the lighter weight UDP protocol is used as the Layer 4 delivery mechanism, although TCP might also be used in environments that suffer higher packet loss. The RTP flow when delivering the content is unidirectional from the server to the client. One interesting part of the RTP operation is that the source port used by the server when sending the UDP data is always even—although it is dynamically assigned. The destination port (i.e., the UDP port on which the client is listening) is chosen by the client and communicated over the RTSP control connection.

Real Time Control Protocol (RTCP)

RTCP is a complimentary protocol to RTP and is a bidirectional UDP-based mechanism to allow the client to communicate stream-quality information back to the object server. The RTCP UDP communication always uses the next UDP source port up from that used by the RTP stream, and consequently is always odd. Figure 3-7 shows how the three protocols work together.

03fig07.gifFigure 3-7. The three main application protocols used in real-time streaming.

RTSP Operation

The RTSP protocol is very similar in structure and specifically syntax to HTTP. Both use the same URL structure to describe an object, with RTSP using the rtsp:// scheme rather than the http://. RTSP, however, introduces a number of additional headers (such as DESCRIBE, SETUP, and PLAY) and also allows data transport out-of-band and over a different protocol, such as RTP described earlier. The best way to understand how the components described previously work together to deliver an audio/video stream is to look at an example. The basic steps involved in the process are as follows:

  1. The client establishes a TCP connection to the servers, typically on TCP port 554, the well-known port for RTSP.

  2. The client will then commence issuing a series of RTSP header commands that have a similar format to HTTP, each of which is acknowledged by the server. Within these RTSP commands, the client will describe to the server details of the session requirements, such as the version of RTSP it supports, the transport to be used for the data flow, and any associated UDP or TCP port information. This information is passed using the DESCRIBE and SETUP headers and is augmented on the server response with a Session ID that the client, and any transitory proxy devices, can use to identify the stream in further exchanges.

  3. Once the negotiation of transport parameters has been completed, the client will issue a PLAY command to instruct the server to commence delivery of the RTP data stream.

  4. Once the client decides to close the stream, a TEARDOWN command is issued along with the Session ID instructing the server to cease the RTP delivery associated with that ID.

Example—RTSP with UDP-Based RTP Delivery

Let's consider an example interaction where the client and server will use a combination of TCP-based RTSP and UDP-based RTP and RTCP to deliver and view a video stream. In the first step, the client will establish a TCP connection to port 554 on the server and issue an OPTIONS command showing the protocol version used for the session. The server acknowledges this with a 200 OK message, similar to HTTP.

C->S  OPTIONS rtsp://video.foocorp.com:554 RTSP/1.0
Cseq: 1

S->C  RTSP/1.0 200 OK
      Cseq: 1

Next, the client issues a DESCRIBE command that indicates to the server the URL of the media file being requested. The server responds with another 200 OK acknowledgment and includes a full media description of the content, which is presented in either Session Description Protocol (SDP) or Multimedia and Hypermedia Experts Group (MHEG) format.

C->S  DESCRIBE rtsp://video.foocorp.com:554/streams/example.rm RTSP/1.0

S->C  RTSP/1.0 200 OK
      Cseq: 2
      Content-Type: application/sdp
Content-Length: 210
      <SDP Data...>

In the third stage of the RTSP negotiation, the client issues a SETUP command that identifies to the server the transport mechanisms, in order of preference, the client wants to use. We won't list all of the available transport options here (the RFC obviously contains an exhaustive list), but we'll see the client request RTP over UDP on ports 5067 and 5068 for the data transport. The server responds with confirmation of the RTP over UDP transport mechanism and the client-side ports and includes the unique Session ID and server port information.

C->S  SETUP rtsp://video.foocorp.com:554/streams/example.rm RTSP/1.0
      Cseq: 3
      Transport: rtp/udp;unicast;client_port=5067-5068

S->C  RTSP/1.0 200 OK
      Cseq: 3
      Session: 12345678
      Transport: rtp/udp;client_port=5067-5068;server_port=6023-6024

Finally, the client is now ready to commence the receipt of the data stream and issues a PLAY command. This simply contains the URL and Session ID previously provided by the server. The server acknowledges this PLAY command, and the RTP stream from the server to client will begin.

C->S  PLAY rtsp://video.foocorp.com:554/streams/example.rm RTSP/1.0
      Cseq: 4
      Session: 12345678

S->C  RTSP/1.0 200 OK
      Cseq: 4

Once the client decides that the stream can be stopped, a TEARDOWN command is issued over the RTSP connection referenced only by the Session ID. The server again acknowledges this and the RTP delivery will cease.

C->S  TEARDOWN rtsp://video.foocorp.com:554/streams/example.rm RTSP/1.0
      Cseq: 5
      Session: 12345678

S->C  RTSP/1.0 200 OK
      Cseq: 5

Figure 3-8 shows this example in a simplified graphic form.

03fig08.gifFigure 3-8. An example of RTSP in action with the video and audio data being delivered over a separate UDP-based RTP stream.

Other Options for Data Delivery

In certain scenarios, the best-effort, dynamic port methods of UDP-based RTP, as described previously, are not suitable. Some environments might consider the allocation of dynamic source and destination UDP ports through firewalls to be something they can live happily without. Moreover, just the nature of the Layer 1 and Layer 2 transport mechanisms underlying the data delivery might not be suited to nonguaranteed UDP traffic. In either instance, RTSP allows for the negotiation of the RTP delivery of the media data to be interleaved into the existing TCP connection.

When interleaving, the client-to-server SETUP command has the following format:

C->S  SETUP rtsp://video.foocorp.com:554/streams/example.rm RTSP/1.0
      Cseq: 3
      Transport: rtp/avp/tcp; interleaved=0-1

The changeover in the preceding example is in the transport description. First, the transport mechanisms have changed to show that the RTP delivery must be over TCP rather than UDP. Second, the addition of the interleaved option shows that the RTP data should be interleaved and use channel identifiers 0 and 1—0 will be used for the RTP data and 1 will be used for the RTCP messages. To confirm the transport setup, the server will respond with confirmation and a Session ID as before:

S->C  RTSP/1.0 200 OK
      Cseq: 3
      Session: 12345678
      Transport: rtp/ avp/tcp; interleaved=0-1

The RTP and RTCP data can now be transmitted over the existing RTSP TCP connection with the server using the 0 and 1 identifiers to represent the relevant channel.

One further delivery option for RTP and RTCP under RTSP is to wrap the delivery of all media streaming components inside traditional HTTP frame formats. This removes most barriers presented when using streaming media through firewalled environments, as even the most stringent administrator will typically allow HTTP traffic to traverse perimeter security. While HTTP and RTSP interleaved delivery of the streamed media data will make the content available to the widest possible audience, when you consider the overhead of wrapping all RTP data inside either an existing TCP stream or, worse still, inside HTTP, it is the least efficient method for delivery. To enable the streaming media client browser to cope with the different options described previously, most offer the client users the ability to configure their preferred delivery mechanism or mechanisms, and the timeout that should be imposed in failing between them. What you will see from a client perspective is that the client application will first request that the stream be delivered using RTP in UDP, and if the stream does not arrive within x seconds (as it is potentially being blocked by an intermediate firewall), it will fail back to using RTP interleaved in the existing RTSP connection.

RTSP and RTP—Further Reading

For further information on the RTSP and RTP protocols, RFCs 2326 and 1889, respectively, are a good source.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020