Home > Articles > Software Development & Management > Architecture and Design

  • Print
  • + Share This
This chapter is from the book

3.6 Architectural Layers and When to Use Them

A two-tier system (Figure 3.12) is one where user interface and application code is allowed to access the APIs directly for database and network access. The application uses the data model stored in the database but does not create a logical model on top of it. A two-tier application is ideal where the system under development is a prototype or is known to have a short system life cycle where APIs will not change. Typically, this approach is used for small applications where development cost and time are both small.

03fig12.jpgFigure 3.12. Two-Tier Layered Architecture

In addition, a two-tier system makes sense in a component-oriented development environment where this approach is used in the implementation of a particular component. The component interface provides a layer of insulation against many of the negative consequences of this approach. Many applications that are created using scripting languages fall in this category as the development of multiple architectural layers could be cumbersome to the point of being impractical.

Finally, a two-tier approach will provide better performance and less need to add mechanisms that control resource locking. While it will have less of an upside in its ability to scale to many concurrent users for limited use applications, the simplicity of a two-tier model may far outweigh the benefits of the other alternatives. In addition, frequently database-stored procedures may be used to eliminate some of the simpler shared data issues by adding common data processing routines into the database application.

Three-tier applications have been common since the growth of the database. A three-tier system (Figure 3.13) satisfies the need for implementation isolation. Most frequently, this is desirable in any system where the storage/database layer of an application may need to be changed. However, this technological isolation is not restricted to just databases. It can, and should, be used whenever it is valuable to share code without requiring the application developer, or more importantly, the application maintainer, to have a detailed understanding of the implementation details of the lowest layer.

03fig13.jpgFigure 3.13. Three-Tier Layered Architecture

Quite frequently reuse is a major design consideration where the application model is created to allow part of it to be reused by multiple user interface view components. As a guideline, whenever an application needs multiple views of the same data, a developer should consider utilizing a three-tier approach instead of a two-tier approach.

Major issues to consider in moving from a two-tier model to a three-tier model include the availability of appropriate network resources and a locking solution to manage concurrent access to data.

A more recent trend has emerged as a result of an increased emphasis on network computing, and that is the four-tier system (Figure 3.14). A four-tier system is an alternative to consider when the application layer needs to support advanced behavior. A four-tier model is like a three-tier model where the application layer is split into a presentation layer and a session a layer. The presentation layer assumes the view portion of the application model along with the application logic that is constrained to the operations of a particular view. The session layer handles resources that are shared between presentation components, including communication with the potentially distributed business object model.

03fig14.jpgFigure 3.14. Four-Tier Layered Architecture

A four-tier development approach is needed when there is a significant amount of coordination required between presentation components as well as a requirement that many resources be shared between them. For example, it works well when caching is required for performance reasons. A session layer allows many different presentation components to take advantage of the performance gains caching provides. Also, if a client is forced to make multiple, potentially complex distribution decisions, it makes sense to encapsulate that logic in a session layer of the application.

Factors that may indicate the need to consider a four-tier development approach are many. Obviously, any four-tier system should be large with a long expected life cycle. Reuse of existing components and subsystems is frequently a sufficient reason to incur the overhead associated with a four-tier system. Along the same lines, environments where individual components are expected to change frequently the design goal is to insulate the majority of the system from changes in component implementations. A four-tier approach provides support for incremental migration of components and subsystems across technologies, both legacy and new. Also, a four-tier system can be more scalable than a three-tier system.

Other factors to consider include systems where the reliability of components is either unknown or variable. A four-tier system can easily incorporate runtime discovery mechanisms to roll over to different component implementations in the event of intermittent component failures. Many complex systems with four or more tiers provide at least some capability to discover new capabilities (e.g., they implement a UDDI registry for advertising new Web Service implementations). If the environment utilizes multiple, potentially conflicting technologies, a four-tier system provides mechanisms to manage differences in either the session management layer or in the business domain object layer. Also, a four-tier model may be desirable if the client has several diverse application models that all need to share common data resources. Frequently, some application components will be content to allow the business domain components to handle resource management issues and can afford to wait for most resources where others may not want to block and wait for resources and have to manage client access in the session layer.

A peer-to-peer (P2P) architectural approach is ideal for systems that need to be highly scalable. Also, they are useful when distributed components need to cooperate to accomplish a task and the reliability of communications and other components are variable. It is important when developing P2P systems that the operating environment be well understood because sloppy practices could result in major disasters. Also, when utilizing P2P technologies, it is important that the interfaces be standardized and highly unlikely to change. Having to cope with multiple incompatible versions of a P2P network is a nightmare.

N-Tier and/or a combination of these approaches (Figure 3.15) should be used only for significantly complex systems made up of subsystems and components that have differing software life cycles. This is true of most large-scale heterogeneous enterprise systems where, at any given time, components are being upgraded, replaced, or added to the system. With such a system, consideration must be given to the administration of the system components.

03fig15.jpgFigure 3.15. Combination of N-Tier and Peer-to-Peer Architecture

What are the features that may merit the complexity of an N-Tier system? In general, it includes systems that manage a variety of data to enhance the user experience. The requirements would include Web sites and applications that remember the profile information of users, allow users to set preferences that control Web pages and applications, manage complex security requirements such as access control lists for controlling resources, and allow users to make changes that require storage management and rule execution within the back-end applications.

With an N-Tier application, the application functionality is partitioned into a number of logical layers that can be maintained and deployed separately. The functionality of each layer is less standard than that of three-tier applications, and frequently many layers can be grouped together to provide presentation, application, and/or business logic and storage management functionality. The primary benefit of supporting many layers is that it is easier to make changes in one layer without having to alter many or, preferably in most cases, any of the other layers. Additionally, the application can be scaled to handle great loads of users and/or data by altering the distribution or load management of one or more layers. Frequently, this scaling can be transparent to other layers and even automated in many cases. In fact, often multitier is assumed to mean spreading processes across various processors and machines rather than defining software boundaries within an application.

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020