Home > Articles > Networking > Routing & Switching

  • Print
  • + Share This
This chapter is from the book

This chapter is from the book

Applying Routing Mechanisms

Once configuration of the system routing strategy is complete and transactions are enabled, PCI Express devices decode inbound TLP headers and use corresponding fields in configuration space Base Address Registers, Base/Limit registers, and Bus Number registers to apply address, ID, and implicit routing to the packet. Note that there are actually two levels of decision: the device first determines if the packet targets an internal location; if not, and the device is a switch, it will evaluate the packet to see if it should be forwarded out of an egress port. A third possibility is that the packet has been received in error or is malformed; in this case, it will be handled as a receive error. There are a number of cases when this may happen, and a number of ways it may be handled. Refer to “PCI Express Error Checking Mechanisms” on page 356 for a description of error checking and handling. The following sections describe the basic features of each routing mechanism; we will assume no errors are encountered.

Address Routing

PCI Express transactions using address routing reference the same system memory and IO maps that PCI and PCIX transactions do. Address routing is used to transfer data to or from memory, memory mapped IO, or IO locations. Memory transaction requests may carry either 32 bit addresses using the 3DW TLP header format, or 64 bit addresses using the 4DW TLP header format. IO transaction requests are restricted to 32 bits of address using the 3DW TLP header format, and should only target legacy devices.

Memory and IO Address Maps

Figure 3-6 on page 122 depicts generic system memory and IO maps. Note that the size of the system memory map is a function of the range of addresses that devices are capable of generating (often dictated by the CPU address bus). As in PCI and PCI-X, PCI Express permits either 32 bit or 64 bit memory addressing. The size of the system IO map is limited to 32 bits (4GB), although in many systems only the lower 16 bits (64KB) are used.

03fig06.jpgFigure 3-6. Generic System Memory And IO Address Maps

Key TLP Header Fields in Address Routing

If the Type field in a received TLP indicates address routing is to be used, then the Address Fields in the header are used to performing the routing check. There are two cases: 32-bit addresses and 64-bit addresses.

TLPs with 3DW, 32-Bit Address

For IO or a 32-bit memory requests, only 32 bits of address are contained in the header. Devices targeted with these TLPs will reside below the 4GB memory or IO address boundary. Figure 3-7 on page 123 depicts this case.

03fig07.jpgFigure 3-7. 3DW TLP Header Address Routing Fields

TLPs With 4DW, 64-Bit Address

For 64-bit memory requests, 64 bits of address are contained in the header. Devices targeted with these TLPs will reside above the 4GB memory boundary. Figure 3-8 on page 124 shows this case.

03fig08.jpgFigure 3-8. 4DW TLP Header Address Routing Fields

An Endpoint Checks an Address-Routed TLP

If the Type field in a received TLP indicates address routing is to be used, then an endpoint device simply checks the address in the packet header against each of its implemented BARs in its Type 0 configuration space header. As it has only one link interface, it will either claim the packet or reject it. Figure 3-9 on page 125 illustrates this case.

03fig09.jpgFigure 3-9. Endpoint Checks Routing Of An Inbound TLP Using Address Routing

A Switch Receives an Address Routed TLP: Two Checks

General

If the Type field in a received TLP indicates address routing is to be used, then a switch first checks to see if it is the intended completer. It compares the header address against target addresses programmed in its two BARs. If the address falls within the range, it consumes the packet. This case is indicated by (1) in Figure 3-10 on page 126. If the header address field does not match a range programmed in a BAR, it then checks the Type 1 configuration space header for each downstream link. It checks the non-prefetchable memory (MMIO) and prefetchable Base/Limit registers if the transaction targets memory, or the I/O Base and Limt registers if the transaction targets I/O address space. This check is indicated by (2) in Figure 3-10 on page 126.

03fig10.jpgFigure 3-10. Switch Checks Routing Of An Inbound TLP Using Address Routing

Other Notes About Switch Address-Routing

The following notes also apply to switch address routing:

  1. If the address-routed packet address falls in the range of one of its secondary bridge interface Base/Limit register sets, it will forward the packet downstream.

  2. If the address-routed packet was moving downstream (was received on the primary interface) and it does not map to any BAR or downstream link Base/Limit registers, it will be handled as an unsupported request on the primary link.

  3. Upstream address-routed packets are always forwarded to the upstream link if they do not target an internal location or another downstream link.

ID Routing

ID routing is based on the logical position (Bus Number, Device Number, Function Number) of a device function within the PCI bus topology. ID routing is compatible with routing methods used in the PCI and PCIX protocols when performing Type 0 or Type 1 configuration transactions. In PCI Express, it is also used for routing completions and may be used in message routing as well.

ID Bus Number, Device Number, Function Number Limits

PCI Express supports the same basic topology limits as PCI and PCI-X:

  1. A maximum of 256 busses/links in a system. This includes busses created by bridges to other PCI-compatible protocols such as PCI, PCI-X, AGP, etc.

  2. A maximum of 32 devices per bus/link. Of course, While a PCI(X) bus or the internal bus of a switch may host more than one downstream bridge interface, external PCI Express links are always point-to-point with only two devices per link. The downstream device on an external link is device 0.

    • A maximum of 8 internal functions per device.

A significant difference in PCI Express over PCI is the provision for extending the amount of configuration space per function from 256 bytes to 4KB. Refer to the “Configuration Overview” on page 711 for a detailed description of the compatible and extended areas of PCI Express configuration space.

Key TLP Header Fields in ID Routing

If the Type field in a received TLP indicates ID routing is to be used, then the ID fields in the header are used to perform the routing check. There are two cases: ID routing with a 3DW header and ID routing with a 4DW header.

3DW TLP, ID Routing

Figure 3-11 on page 128 illustrates a TLP using ID routing and the 3DW header.

03fig11.jpgFigure 3-11. 3DW TLP Header ID Routing Fields

4DW TLP, ID Routing

Figure 3-12 on page 129 illustrates a TLP using ID routing and the 4DW header.

03fig12.jpgFigure 3-12. 4DW TLP Header ID Routing Fields

An Endpoint Checks an ID-Routed TLP

If the Type field in a received TLP indicates ID routing is to be used, then an endpoint device simply checks the ID field in the packet header against its own Bus Number, Device Number, and Function Number(s). In PCI Express, each device “captures” (and remembers) its own Bus Number and Device Number contained in TLP header bytes 8-9 each time a configuration write (Type 0) is detected on its primary link. At reset, all bus and device numbers in the system revert to 0, so a device will not respond to transactions other than configuration cycles until at least one configuration write cycle (Type 0) has been performed. Note that the PCI Express protocol does not define a configuration space location where the device function is required to store the captured Bus Number and Device Number information, only that it must do it.

Once again, as it has only one link interface, an endpoint will either claim an ID-routed packet or reject it. Figure 3-11 on page 128 illustrates this case.

A Switch Receives an ID-Routed TLP: Two Checks

If the Type field in a received TLP indicates ID routing is to be used, then a switch first checks to see if it is the intended completer. It compares the header ID field against its own Bus Number, Device Number, and Function Number(s). This is indicated by (1) in Figure 3-13 on page 131. As in the case of an endpoint, a switch captures its own Bus Number and Device number each time a configuration write (Type 0) is detected on i's primary link interface. If the header ID agrees with the ID of the switch, it consumes the packet. If the ID field does not match i's own, it then checks the Secondary-Subordinate Bus Number registers in the configuration space for each downstream link. This check is indicated by (2) in Figure 3-13 on page 131.

03fig13.jpgFigure 3-13. Switch Checks Routing Of An Inbound TLP Using ID Routing

Other Notes About Switch ID Routing

  1. If the ID-routed packet matches the range of one of its secondary bridge interface Secondary-Subordinate registers, it will forward the packet downstream.

  2. If the ID-routed packet was moving downstream (was received on the primary interface) and it does not map to any downstream interface, it will be handled as an unsupported request on the primary link.

  3. Upstream ID-routed packets are always forwarded to the upstream link if they do not target an internal location or another downstream link.

Implicit Routing

Implicit routing is based on the intrinsic knowledge PCI Express devices are required to have concerning upstream and downstream traffic and the existence of a single PCI Express Root Complex at the top of the PCI Express topology. This awareness allows limited routing of packets without the need to assign and include addresses with certain message packets. Because the Root Complex generally implements power management and interrupt controllers, as well as system error handling, it is either the source or recipient of most PCI Express messages.

Only Messages May Use Implicit Routing

With the elimination of many sideband signals in the PCI Express protocol, alternate methods are required to inform the host system when devices need service with respect to interrupts, errors, power management, etc. PCI Express addresses this by defining a number of special TLPs which may be used as virtual wires in conveying sideband events. Message groups currently defined include:

  • Power Management

  • INTx legacy interrupt signaling

  • Error signaling

  • Locked Transaction support

  • Hot Plug signaling

  • Vendor-specific messages

  • Slot Power Limit messages

Messages May Also Use Address or ID Routing

In systems where all or some of this event traffic should target the system memory map or a logical location in the PCI bus topology, address routing and ID routing may be used in place of implicit routing. If address or ID routing is chosen for a message, then the routing mechanisms just described are applied in the same way as they would for other posted write packets.

Routing Sub-Field in Header Indicates Routing Method

As a message TLP moves between PCI Express devices, packet header fields indicate both that it is a message, and whether it should be routed using address, ID, or implicitly.

Key TLP Header Fields in Implicit Routing

If the Type field in a received message TLP indicates implicit routing is to be used, then the routing sub-field in the header is also used to determine the message destination when the routing check is performed. Figure 3-14 on page 133 illustrates a message TLP using implicit routing.

03fig14.jpgFigure 3-14. 4DW Message TLP Header Implicit Routing Fields

Message Type Field Summary

Table 3-7 on page 134 summarizes the use of the TLP header Type field when a message is being sent. As shown, the upper two bits of the 5 bit Type field indicate the packet is a message, and the lower three bits are the routing sub-field which specify the routing method to apply. Note that the 4DW header is always used with message TLPs, regardless of the routing option selected.

Table 3-7. Message Request Header Type Field Usage

Type Field Bits

Description

Bit 4:3

Defines the type of transaction:

10b = Message Transaction

Bit 2:0

Message Routing Subfield R[2:0], used to select message routing:

  • 000b = Route to Root Complex

  • 001b = Use Address Routing

  • 010b = Use ID Routing

  • 011b = Route as a Broadcast Message from Root Complex

  • 100b = Local message; terminate at receiver (INTx messages)

  • 101b = Gather & route to Root Complex (PME_TO_Ack message)

An Endpoint Checks a TLP Routed Implicitly

If the Type field in a received message TLP indicates implicit routing is to be used, then an endpoint device simply checks that the routing sub-field is appropriate for it. For example, an endpoint may accept a broadcast message or a message which terminates at the receiver; it won't accept messages which implicitly target the Root Complex.

A Switch Receives a TLP Routed Implicitly

If the Type field in a received message TLP indicates implicit routing is to be used, then a switch device simply considers the ingress port it arrived on and whether the routing sub-field code is appropriate for it. Some examples:

  1. The upstream link interface of a switch may legitimately receive a broadcast message routed implicitly from the Root Complex. If it does, it will forward it intact onto all downstream links. It should not see an implicitly routed broadcast message arrive on a downstream ingress port, and will handle this as a malformed TLP.

  2. The switch may accept messages indicating implicit routing to the root complex on secondary links; it will forward all of these upstream because it “knows” the location of the Root Complex is on its primary side. It would not accept messages routed implicitly to the Root Complex if they arrived on the primary link receive interface.

  3. If the implicitly-routed message arrives on either upstream or downstream ingress ports, the switch may consume the packet if routing indicates it should terminate at receiver.

  4. If messages are routed using address or ID methods, a switch will simply perform normal address checks in deciding whether to accept or forward it.

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020