Home > Articles > Networking > Network Administration & Management

Achieving Nomadicity: Accessing the Internet Anytime, Anywhere

  • Print
  • + Share This
This chapter explains the key concepts that make it possible for users and devices to gain access to IP networks and IP-based applications that are offered by others than their own operator.
This chapter is from the book

This chapter is from the book

Rather than focusing on keeping sessions alive, nomadicity is about being able to use the Internet and its services, regardless of location and time. The biggest challenge in gaining ubiquitous access is to be able to use networks and services that are not controlled by the operator that the user has a subscription with. This chapter explains the key concepts that make it possible for users and devices to gain access to IP networks and IP-based applications that are offered by others than their own operator. Nomadic or roaming use of the Internet refers to a usage pattern in which network connectivity is not available (or used) on a permanent basis, but rather intermittently and opportunistically. In other words, no session persistency at the transport layer is assumed. Therefore, this chapter does not cover Layer 2 or Layer 3 mobility, which are part of subsequent chapters. In particular, this chapter will not discuss roaming within the network of a cellular operator because that is based on Layer 2 roaming.

The basis of all Internet communications is, obviously, getting access to the Internet in the first place. In a local environment, getting access might be as simple as plugging an unshielded twisted-pair (UTP) cable into a wall outlet. As organizations grow bigger, in particular when wireless technologies are deployed or when users need to access the network from outside their own organization, security based on the ability to enter a particular building is no longer sufficient. There is a need to control access to the local network and the Internet in a scalable and efficient way.

A similar reasoning holds for application access. Users need to be able to access their networked applications, regardless of where they are. An increasingly popular phenomenon is that of offering applications "in the cloud," meaning that the application is hosted or offered by a third party somewhere on the Internet.

These are examples of the need for authentication, authorization, and accounting (AAA) mechanisms to control which persons or devices can gain access to the network and what they are allowed to do on that network. This chapter explains those mechanisms as well as the associated opportunities and challenges that come with that ability, in particular in a roaming situation.

Authentication and Authorization

A central concept for access to networks and applications is that of the digital identity—the digital representation of users or devices. The digital identity is usually associated with a unique identifier (such as a number or a name).

Authentication establishes the link between actual persons or devices and their digital representation. In other words, by successfully authenticating yourself, you prove to the network or the application that you are who you claim to be. After successful authentication, the network or the application then decides, based on policies that the operator or owner of the application has defined, what resources you get access to—the authorization.

As you can imagine, operators that often have millions of subscribers need to have sophisticated systems to keep track of all these subscribers and to provide adequate mechanisms for provisioning and deprovisioning, billing, authentication, and other services that are available to the subscribers. The servers that perform these tasks are generally referred to as AAA servers (pronounced triple A servers). As you will see in the sections that follow, in different domains, different types of electronic identifiers are used, which results in interoperability challenges. For example, the identifier that is used to gain access to a Long Term Evolution (LTE) network cannot be used just like that to gain access to a Wi-Fi network.

Authentication and Authorization in LTE

There are many types of cellular networks in use today. Standardization takes place in the Third Generation Partnership Project (3GPP)1 and 3GPP22 (focusing mainly on the North American market). Instead of describing all the generations (1G, 2G, 2.5G, 3G, and 4G) and all the standards in those generations (CDMA, CDMA2000, EV-DO, HSDPA, GSM, UMTS, and many more) that all come with slightly different authentication methods and various roaming capabilities, this section provides a description of the LTE system for two main reasons:

  • LTE is the technology that gains support from most mobile operators as the technology of choice for their future networks.
  • LTE is the cellular technology that provides the most comprehensive system for roaming with other cellular but also noncellular network technologies.

Strictly speaking, LTE is only the radio access network technology. The core network architecture goes by the name System Architecture Evolution (SAE) and defines the Evolved Packet Core (EPC), the fixed part of a mobile operator network. But what is commonly referred to as LTE encompasses both the radio and the fixed network. This chapter will follow that convention.

Figure 3-1 shows the various components in an LTE network; these are defined in the list that follows. Chapter 4, "Data Link Layer Mobility," describes the EPC and its associated mobility protocol in more detail.

Figure 3-1

Figure 3-1 LTE Architecture

  • The user equipment (UE) is the mobile device.
  • The eNodeB is the access point to which the terminal connects through the wireless network and that is connected to the EPC.
  • The Mobile Management Entity (MME) is the central control component in the EPC, and it is responsible for authenticating the user (by interfacing with the HSS—see the later bullet), assigning temporary identifiers to the terminals, roaming authorization, and lawful intercept.
  • The Serving Gateway (Serving GW) routes packets to and from other 3GPP networks (General Packet Radio Service [GPRS], Universal Mobile Telecommunications System [UMTS]) and is a transient mobility anchor for the UE in those networks.
  • The Packet Data Network Gateway (PDN GW) performs the routing to and from non-3GPP networks (like Wi-Fi, Code Division Multiple Access [CDMA] 1X, Evolution-Data-Optimized [EVDO], and WiMAX) and is the permanent mobility anchor for the UE roaming with those networks—in other words, the IP point of attachment.
  • The Home Subscriber Server (HSS) contains the database with all subscriber data and is used to perform authentication and authorization as well as to provide user location.

The 3GPP specifications3 define a number of identifiers to be used in cellular networks, the most important of which are those that identify, respectively, a user, a user subscription, and a device.

The International Mobile Subscriber Identity (IMSI) identifies users. The IMSI conforms to the ITU E.212 numbering standard and is usually 15 digits long (but can be shorter) and consists of a country code, a network operator code, and a mobile subscriber identity. The IMSI is stored in the SIM card and is used as the index key for subscriber data in the HSS, a database containing the data of all subscribers and the services they are entitled to. For privacy reasons, the IMSI is sent as little as possible over the network. Instead, after successful authentication, a temporary identifier, the Temporary Mobile Subscriber Identity (TMSI), is used.

An identifier called the Mobile Subscriber ISDN Number (MSISDN) is the phone number that corresponds with the SIM card in a mobile phone of a user. An MSISDN conforms to the ITU E.164 numbering standard and contains 15 digits that identify the country code, the network operator, and the subscriber.

Finally, the International Mobile Equipment Identity (IMEI) identifies the mobile device itself (not the SIM card inside).

Using the Authentication and Key Agreement (AKA) protocol defined in RFC 33104, a user authenticates to 3G and 4G networks and vice versa. The AKA procedure is a challenge-response mechanism based on a shared key that is stored on the SIM card of the terminal and in the Authentication Center (AuC) that is part of the HSS (in LTE) or HLR (in 3G). This shared key is used as input to algorithms to calculate other keys that are used for integrity (IK) and confidentiality (CK) protection of the data and for calculating the response to the challenge sent in the AKA.

Figure 3-2 and the list that follows show how the AKA procedure works in LTE. (Incidentally, UMTS networks also use the AKA.)

Figure 3-2

Figure 3-2 AKA Authentication

  1. A shared secret (Ki) is defined beforehand and stored in both the SIM card and the Authentication Center (part of the HSS).
  2. The terminal sends an Attach Request to the MME containing the IMSI or TMSI of the user.
  3. The MME requests authentication information from the HSS.
  4. The Authentication Center function in the HSS takes a random challenge (RAND), uses the shared key Ki that is associated with the IMSI to calculate the expected response (XRES) to that challenge, as well as CK and IK, and sends an authentication vector (AV) containing RAND, XRES, CK, and IK as well as the authentication token (AUTN) used by the SIM for authenticating the network to the UE.
  5. The MME then sends an authentication request to the terminal containing the RAND and AUTN. The SIM authenticates the network by verifying the AUTN and calculates the CK and IK, as well as the response (RES) to the challenge RAND using the same algorithms the HSS used.
  6. The RES is sent to the MME and compared with the XRES. If the RES and XRES match, the terminal gets access.

Authentication and Authorization in Wi-Fi Networks

As described in the sections that follow, authentication for Wi-Fi networks typically comes in two flavors—captive portals and IEEE 802.1X.

Captive Portals

With the captive portal approach, the device gets access to the local wireless IP network only. Whenever the user requests a web page outside the local network, the captive portal captures that request (hence the name) and instead shows a login page in which the user enters his or her username and password or credit card details. The user credentials are verified in some kind of user database, and upon successful verification, the user then gets access to the Internet. User identifiers take the form of a username.

802.1X and EAP

The IEEE 802.1X standard defines a framework for access control to a local-area network by encapsulating Extensible Authentication Protocol (EAP) messages. Wireless security standards such as WPA (Wi-Fi Protected Access) and WPA2 use 802.1X and EAP.

Figure 3-3 illustrates an 802.1X authentication. 802.1X defines three entities:

  • The supplicant is a piece of code that runs on the user device.
  • The authenticator is the device that gives the device network access; in Wi-Fi, this is the access point.
  • The authentication server (typically a RADIUS server) verifies the user credentials in some sort of user database and informs the authenticator of the outcome.
Figure 3-3

Figure 3-3 802.1X Authentication Example of Student Gaining Access to the Campus Cetwork (Courtesy of SURFnet)

The user identifier usually takes the form of a Network Access Identifier5 (NAI), an identifier of the form username@realm, where the realm stands for the administrative domain to which the user belongs.

User credentials are transported to the authentication server by using the EAP6, a generic framework for forwarding encapsulated authentication data. EAP allows many types of credentials to be used, including username/password combinations, X.509 certificates, and others.

Figure 3-4 shows the EAP architecture. Between the supplicant and the authenticator, the EAP messages are encapsulated in Ethernet frames (EAP over LAN). Between the authenticator and the authentication server, EAP is usually encapsulated in RADIUS (or alternatively Diameter).

Figure 3-4

Figure 3-4 EAP Message Communication

EAP methods define how authentication data should be encapsulated into EAP messages. Many different EAP methods exist. A number of EAP methods support confidentiality of user credentials in transit between the supplicant and authentication server. This means that neither the authenticator nor other network elements in the path between supplicant and authentication server can eavesdrop on the user credentials. In Wi-Fi networks, EAP-TTLS,7 PEAP,8 and EAP-FAST9 are mainly used. All of these protect the user credentials against eavesdropping and allow mutual authentication of supplicant and authentication server. For roaming between cellular networks and Wi-Fi networks, EAP-AKA can be used, as discussed in the section "Non-3GPP Access," later in this chapter.

Authentication and Authorization for Internet Applications

Authentication for network access is relatively difficult because there is no IP connectivity yet, so special protocols like 802.1X need to be used to transport user credentials to the authentication server. But as you saw in Chapter 2, "page 13," after you have IP connectivity, the sky is the limit. Therefore, it is hard to say anything in general about authentication for networked applications. Many different protocols exist, such as Kerberos, NT LAN Manager (NTLM), HTTP Basic Authentication, and so on. Also, every possible authentication method, ranging from username/password combinations and one-time passwords to smartcard authentication, exists and is in use. For web-based applications, the most common one is still username/password over (hopefully) a Secure Socket Layer (SSL) connection.

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020