Home > Articles > Programming > C/C++

📄 Contents

  1. Drawing Using OpenGL
  2. Combining OpenGL and QPainter
  3. Doing Overlays Using Framebuffer Objects
  • Print
  • + Share This
This chapter is from the book

Doing Overlays Using Framebuffer Objects

Often, we need to draw simple annotations on top of a complex 3D scene. If the scene is very complex, it may take several seconds to render it. To avoid rendering the scene repeatedly, whenever an annotation changes we could use X11 overlays or the built-in OpenGL support for overlays.

More recently, the availability of pbuffers and framebuffer objects has provided a more convenient and more flexible idiom for doing overlays. The basic idea is that we render the 3D scene onto an off-screen surface, which we bind to a texture. The texture is mapped onto the screen by drawing a rectangle, and the annotations are drawn on top. When the annotations change, we need to redraw only the rectangle and the annotations. Conceptually, this is very similar to what we did in Chapter 5 for the 2D Plotter widget.

To illustrate this technique, we will review the code of the Teapots application shown in Figure 20.3. The application consists of a single OpenGL window that shows an array of teapots and that lets the user draw a rubber band on top by clicking and dragging the mouse. The teapots do not move or change in any way, except when the window is resized. The implementation relies on a framebuffer object to store the teapot scene. A similar effect could be implemented using a pbuffer by substituting QGLPixelBuffer for QGLFramebufferObject.


Figure 20.3 The Teapots application

class Teapots : public QGLWidget

    Teapots(QWidget *parent = 0);

    void initializeGL();
    void resizeGL(int width, int height);
    void paintGL();
    void mousePressEvent(QMouseEvent *event);
    void mouseMoveEvent(QMouseEvent *event);
    void mouseReleaseEvent(QMouseEvent *event);

    void createGLTeapotObject();
    void drawTeapot(GLfloat x, GLfloat y, GLfloat ambientR,
                    GLfloat ambientG, GLfloat ambientB,
                    GLfloat diffuseR, GLfloat diffuseG,
                    GLfloat diffuseB, GLfloat specularR,
                    GLfloat specularG, GLfloat specularB,
                    GLfloat shininess);
    void drawTeapots();
    QGLFramebufferObject *fbObject;
    GLuint glTeapotObject;
    QPoint rubberBandCorner1;
    QPoint rubberBandCorner2;
    bool rubberBandIsShown;

The Teapots class is derived from QGLWidget and reimplements the high-level OpenGL handlers initializeGL(), resizeGL(), and paintGL(). It also reimplements mousePressEvent(), mouseMoveEvent(), and mouseReleaseEvent() to let the user draw a rubber band.

The private functions take care of creating the teapot object and of drawing teapots. The code is rather complex and is based on the teapots example in OpenGL Programming Guide by Jackie Neider, Tom Davis, and Mason Woo (Addison-Wesley, 1993). Since it is not directly relevant to our purposes, we will not present it here.

The private variables store the framebuffer object, the teapot object, the rubber band's corners, and whether the rubber band is visible.

Teapots::Teapots(QWidget *parent)
    : QGLWidget(parent)
    rubberBandIsShown = false;

    fbObject = new QGLFramebufferObject(1024, 1024,

The Teapots constructor initializes the rubberBandIsShown private variable, creates the framebuffer object, and creates the teapot object. We will skip the createGLTeapotObject() function since it is rather long and contains no Qt-relevant code.

    delete fbObject;
    glDeleteLists(glTeapotObject, 1);

In the destructor, we release the resources associated with the framebuffer object and the teapot.

void Teapots::initializeGL()
    static const GLfloat ambient[] = { 0.0, 0.0, 0.0, 1.0 };
    static const GLfloat diffuse[] = { 1.0, 1.0, 1.0, 1.0 };
    static const GLfloat position[] = { 0.0, 3.0, 3.0, 0.0 };
    static const GLfloat lmodelAmbient[] = { 0.2, 0.2, 0.2, 1.0 };
    static const GLfloat localView[] = { 0.0 };

    glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);
    glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
    glLightfv(GL_LIGHT0, GL_POSITION, position);
    glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodelAmbient);
    glLightModelfv(GL_LIGHT_MODEL_LOCAL_VIEWER, localView);


The initializeGL() function is reimplemented to set up the lighting model and to turn on various OpenGL features. The code is taken directly from the teapots example described in the OpenGL Programming Guide referred to earlier.

void Teapots::resizeGL(int width, int height)


    glViewport(0, 0, width, height);
    if (width <= height) {
        glOrtho(0.0, 20.0, 0.0, 20.0 * GLfloat(height) / GLfloat(width),
                -10.0, 10.0);
    } else {
        glOrtho(0.0, 20.0 * GLfloat(width) / GLfloat(height), 0.0, 20.0,
                -10.0, 10.0);


The resizeGL() function is reimplemented to redraw the teapot scene whenever the Teapot widget is resized. To render the teapots onto the framebuffer object, we call QGLFramebufferObject::bind() at the beginning of the function. Then, we set up some OpenGL features and the projection and model view matrices. The call to drawTeapots() near the end draws the teapots onto the framebuffer object. Finally, the call to release() unbinds the framebuffer object, ensuring that subsequent OpenGL drawing operations don't go to our framebuffer object.

void Teapots::paintGL()
    glViewport(0, 0, width(), height());

    glBindTexture(GL_TEXTURE_2D, fbObject->texture());
    glColor3f(1.0, 1.0, 1.0);
    GLfloat s = width() / GLfloat(fbObject->size().width());
    GLfloat t = height() / GLfloat(fbObject->size().height());

    glTexCoord2f(0.0, 0.0);
    glVertex2f(-1.0, -1.0);
    glTexCoord2f(s, 0.0);
    glVertex2f(1.0, -1.0);
    glTexCoord2f(s, t);
    glVertex2f(1.0, 1.0);
    glTexCoord2f(0.0, t);
    glVertex2f(-1.0, 1.0);

In paintGL(), we start by resetting the projection and model view matrices. Then we bind the framebuffer object to a texture, and draw a rectangle with the texture to cover the entire widget.

    if (rubberBandIsShown) {
        glOrtho(0, width(), height(), 0, 0, 100);
        glColor4f(1.0, 1.0, 1.0, 0.2);
        glRecti(rubberBandCorner1.x(), rubberBandCorner1.y(),
                rubberBandCorner2.x(), rubberBandCorner2.y());
        glColor4f(1.0, 1.0, 0.0, 0.5);
        glLineStipple(3, 0xAAAA);

        glVertex2i(rubberBandCorner1.x(), rubberBandCorner1.y());
        glVertex2i(rubberBandCorner2.x(), rubberBandCorner1.y());
        glVertex2i(rubberBandCorner2.x(), rubberBandCorner2.y());
        glVertex2i(rubberBandCorner1.x(), rubberBandCorner2.y());


If the rubber band is currently shown, we draw it on top of the rectangle. The code is standard OpenGL.

void Teapots::mousePressEvent(QMouseEvent *event)
    rubberBandCorner1 = event->pos();
    rubberBandCorner2 = event->pos();
    rubberBandIsShown = true;

void Teapots::mouseMoveEvent(QMouseEvent *event)
    if (rubberBandIsShown) {
        rubberBandCorner2 = event->pos();

void Teapots::mouseReleaseEvent(QMouseEvent * /* event */)
    if (rubberBandIsShown) {
        rubberBandIsShown = false;

The mouse event handlers update the rubberBandCorner1, rubberBandCorner2, and rubberBandIsShown variables that represent the rubber band and call updateGL() to schedule a repaint of the scene. Repainting the scene is very quick, because paintGL() only draws a textured rectangle and a rubber band on top of it. The scene is rendered anew only when the user resizes the window, in resizeGL().

Here's the application's main() function:

int main(int argc, char *argv[])
    QApplication app(argc, argv);

    if (!QGLFormat::hasOpenGL()) {
        std::cerr << "This system has no OpenGL support" << std::endl;
        return 1;

    if (!QGLFramebufferObject::hasOpenGLFramebufferObjects()) {
        std::cerr << "This system has no framebuffer object support"
                  << std::endl;
        return 1;

    Teapots teapots;
    teapots.resize(400, 400);

    return app.exec();

The function gives an error message and terminates with an error code if the system has no OpenGL support, or if it has no framebuffer object support.

The Teapots example gives us a taste of how we can bind an off-screen surface to a texture and draw onto that surface using OpenGL commands. Many variations are possible; for example, we could use a QPainter instead of OpenGL commands to draw on a QGLFramebufferObject or QGLPixelBuffer. This provides a way to render transformed text in an OpenGL scene. Another common idiom is to use a framebuffer object to render a scene and then call toImage() on the result to produce a QImage. The examples included with Qt show many of these idioms in action, both for framebuffer objects and for pbuffers.

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020