Home > Articles > Programming > Java

  • Print
  • + Share This
This chapter is from the book

Real-Time Computing

Now that you have an understanding of what real-time is and what it means, it’s time to expand on it. Real-time computing is the study and practice of building applications with real-world time-critical constraints. Real-time systems must respond to external, often physical, real-world events at a certain time, or by a deadline. A real-time system often includes both the hardware and the software in its entirety. Traditionally, real-time systems were purpose-built systems implemented for specific use; it’s only recently that the real-time community has focused on general-purpose computing systems (both hardware and/or software) to solve real-time problems.

Today, the need for specialized, dedicated, hardware for real-time systems has mostly disappeared. For instance, modern chipsets include programmable interrupt controllers with latency resolution small enough for demanding real-time applications. As a result, support for real-time requirements has moved to software; i.e., specialized schedulers and resource controllers. Algorithms that were once etched into special circuitry are now implemented in software on general-purpose computers.

This is not to say that hardware support isn’t needed in a real-time system. For example, many real-time systems will likely require access to a programmable interrupt controller for low-latency interrupts and scheduling, a high-resolution clock for precise timing, direct physical memory access, or a high-speed memory cache. Most modern computer hardware, including servers, workstations, and even desktops and laptops, support these requirements. The bottom line is whether the operating system software running on this hardware supports access to these hardware facilities.

The operating system may, in fact, support real-time tasks directly through its scheduling implementation, or may at least allow alternative scheduling algorithms be put in place. However, many general-purpose operating systems schedule tasks to achieve different goals than a real-time system. Other factors, such as overall system throughput, foreground application performance, and GUI refresh rates, may be favored over an individual task’s latency requirements. In fact, in a general-purpose system, there may be no way to accurately specify or measure an application’s latency requirements and actual results.

However, it is still possible to achieve real-time behavior, and meet real-time tasks’ deadlines, on general-purpose operating systems. In fact, this is one of the charter goals that Java RTS, and the RTSJ, set out to solve: real-time behavior in Java on general-purpose hardware and real-time operating systems. In reality, only a subset of general-purpose systems can be supported.

The remainder of this chapter provides an overview of the theory and mechanics involved in scheduling tasks in a real-time system. To be clear, real-time scheduling theory requires a great deal of math to describe and understand thoroughly. There is good reason for this: when a system has requirements to meet every deadline for actions that may have dire consequences if missed, you need to make assurances with the utmost precision. Characterizing and guaranteeing system behavior with mathematics is the only way to do it. However, we’ll attempt to discuss the subject without overburdening you with deep mathematical concepts. Instead, analogies, descriptions, and visuals will be used to bring the concepts down to earth, at a level where the average programmer should be comfortable. For those who are interested in the deeper math and science of the subject, references to further reading material are provided.

The Highway Analogy

One simple way to describe the dynamics of scheduling tasks in a real-time system is to use a highway analogy. When driving a car, we’ve all experienced the impact of high volume; namely, the unpredictable amount of time spent waiting in traffic instead of making progress towards a destination. This situation is strikingly similar to scheduling tasks in a real-time system, or any system, for that matter. In the case of automobile traffic, the items being scheduled are cars, and the resource that they’re all sharing is road space. Comparatively, a computer system schedules tasks, and the resource they share is CPU time. (Of course, they also share memory, IO, disk access, and so on, but let’s keep it simple for now.)

In the highway analogy, the lanes represent overall computer resources, or time available to process tasks. More capable computers can be loosely described as having more lanes available, while less capable systems have fewer. A car is equivalent to a task that has been released (eligible for execution). Looking at Figure 1-8, you can see tasks “traveling” down individual lanes, making forward progress over time. At moments when more tasks share the highway, the entire system is considered to be busy, and usually all tasks will execute slower. This is similar to the effects that high volumes of cars have on individual car speeds; they each slow down as they share the highway. Since, in this scenario, all tasks share the resources (the highway) equally, they are all impacted in a similar, but unpredictable, way. It’s impossible to deterministically know when an individual task will be able to complete.

Figure 1-8

Figure 1-8 As with cars on a highway, when there are more tasks executing, the system slows down, and execution times become unpredictable.

In the real world, engineers designing road systems have come up with a solution to this problem: a dedicated lane.

The Highway Analogy—Adding a Priority Lane

Figure 1-9 proposes a specialized solution to this problem: a dedicated high-priority lane (sometimes called a carpool, or HOV lane, on a real highway). We refer to it as specialized because it doesn’t help all tasks in the system (or all cars on the highway), only those that meet the requirements to enter the high-priority lane. Those tasks (or cars) receive precedence over all others, and move at a more predictable pace. Similarly, in a real-time system, dedicating system resources to high-priority tasks ensures that those tasks gain predictability, are less prone to traffic delay, and therefore complete more or less on time. Only the normal (lower-priority) tasks feel the effects of high system volume.

Figure 1-9

Figure 1-9 Introducing a high-priority lane to a highway ensures that the cars in that lane are less susceptible to traffic, and therefore travel more predictably towards their destinations.

This analogy goes a long way towards describing, and modeling, the dynamics of a real-time system. For instance:

  • Tasks in the high-priority lane gain execution precedence over other tasks.
  • Tasks in the high-priority lane receive a dedicated amount of system resources to ensure they complete on time.
  • When the system is busy, only normal tasks feel the impact; tasks in the high-priority lane are almost completely unaffected.
  • Overall, the system loses throughput, as fewer lanes are available to execute tasks.
  • Tasks only enter the high-priority lane at certain checkpoints.
  • Some system overhead is required at the checkpoints. Just as cars need to cautiously (and slowly) enter and exit a carpool lane, tasks are slightly impacted.
  • Tasks may be denied access to the high-priority lane if their entry would adversely affect the other tasks already running.

Additionally, metering lights are used at the on-ramps to many highways. These lights control the flow of additional cars (analogy: new tasks) onto the highway to ensure the cars already on the highway are impacted as little as possible. These lights are analogous to the admission control algorithm of the scheduler in real-time system.

Most importantly, this analogy shows that there’s no magic involved in supporting a real-time system; it, too, has its limits. For instance, there’s a limit to the number of high-priority tasks that can execute and meet their deadlines without causing all tasks to miss their deadlines. Also, because of the need to dedicate resources to real-time tasks, the added checkpoints for acceptance of real-time tasks, the need to more tightly control access to shared resources, and the need to perform additional task monitoring; the system as a whole will assuredly lose some performance and/or throughput. However, in a real-time system, predictability trumps throughput, which can be recovered by other, less-complicated, means.

As we explore the details of common scheduling algorithms used in actual real-time systems, you will also see that simply “adding more lanes” doesn’t always resolve the problem effectively. There are practical limits to any solution. In fact, in some cases that we’ll explore, adding processors to a computer can cause previously feasible schedules to become infeasible. Task scheduling involves many system dynamics, where the varying combination of tasks and available resources at different points in time represents a difficult problem to solve deterministically. However, it can be done. Let’s begin to explore some of the common algorithms used, and the constraints they deal with.

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020