# Signal Integrity, Impedance and Electrical Models

This chapter is from the book

## 3.9 Circuit Theory and SPICE

There is a well-defined and relatively straightforward formalism to describe the impedance of combinations of ideal circuit elements. This is usually referred to as circuit theory. The important rule in circuit theory is that when two or more elements are in series, that is, connected end-to-end, the impedance of the combination, from one end terminal to the other end terminal, is the sum of the impedances of each element. What makes it a little complicated is that when in the frequency domain, the impedances that are summed are complex and must obey complex algebra.

In the previous section, we saw that it is possible to calculate the impedance of each individual circuit element by hand. When there are combinations of circuit elements it gets more complicated. For example, the impedance of an RLC model approximating a real capacitor is given by:

Equation 3-17

We could use this analytic expression for the impedance of the RLC circuit to plot the impedance versus frequency for any chosen values of R, L, and C. It can conveniently be used in a spreadsheet and each element changed. When there are five or ten elements in the circuit model, the resulting impedance can be calculated by hand, but it can be very complicated and tedious.

However, there is a commonly available tool that is much more versatile in calculating and plotting the impedance of any arbitrary circuit. It is so common and so easy to use, every engineer who cares about impedance or circuits in general, should have access to it on their desktop. It is SPICE.

SPICE stands for Simulation Program with Integrated Circuit Emphasis. It was developed in the early 1970s at UC Berkeley as a tool to predict the behavior of transistors based on the as-fabricated dimensions. It is basically a circuit simulator. Any circuit we can draw with R, L, C, and T elements can be simulated for a variety of voltage or current-exciting waveforms. It has evolved and diversified over the past 30 years, with over 30 vendors each adding their own special features and capabilities. There are a few either free versions or student versions for less than \$100 that can be downloaded from the Web. Some of the free versions have limited capability but are excellent tools to learn about circuits.

In SPICE, only ideal circuit elements are used and every circuit element has a well-defined, precise behavior. There are two basic types of elements: active and passive. The active elements are the signal sources, current or voltage waveforms, or actual transistor or gate models. The passive elements are all the ideal circuit elements described above. One of the distinctions between the various forms of SPICE is the variety of ideal circuit elements they provide. Every version of SPICE includes at least the R, L, C, and T (transmission-line) elements.

SPICE simulators allow the prediction of the voltage or current at every point in a circuit, simulated either in the time-domain or the frequency domain. A time-domain simulation is called a transient simulation and a frequency-domain simulation is called an AC simulation. SPICE is an incredibly powerful tool.

For example, a driver connected to two receivers located very close together can be modeled with a simple voltage source and an RLC circuit. The R is the impedance of the driver, typically about 10 Ohms. The C is the capacitance of the interconnect traces and the input capacitance of the two receivers, typically about 5 pF total. The L is the total loop inductance of the package leads and the interconnect traces, typically about 7 nH. The set-up of this circuit in SPICE and the resulting time-domain waveform, showing the ringing that might be found in the actual circuit, is shown in Figure 3-9.

Figure 3-9. Simple equivalent circuit model to represent a driver and receiver fanout of two, including the packaging and interconnects, as set up in Agilent's Advanced Design System (ADS), a version of SPICE, and the resulting simulation of the internal-voltage waveform and the voltage at the input of the receivers. The rise time simulated is 0.5 nsec. The lead and interconnect inductance plus the input-gate capacitance dominate the source of the ringing.

If the circuit schematic can be drawn, SPICE can simulate the voltage and current waveforms. This is the real power of SPICE for general electrical engineering analysis.

SPICE can be used to calculate and plot the impedance of any circuit in the frequency domain. Normally, it plots only the voltage or current waveforms at every connection point, but a trick can be used to convert this into impedance.

One of the circuit elements SPICE has in its toolbox for AC simulation is a constant-current sine-wave-current source. This current source will output a sine wave of current, with a constant amplitude, at a predetermined frequency. When running an AC analysis, the SPICE engine will step the frequency of the sine-wave-current source from the start frequency value to the stop frequency value with a number of intermediate frequency points.

It generates the constant-current amplitude by outputting a sin wave voltage-amplitude sine wave. The amplitude of the voltage wave is automatically adjusted to result in the specified constant amplitude of current.

To build an impedance analyzer in SPICE, we set the current source to have a constant amplitude of 1 Amp. No matter what circuit elements are connected to the current source, SPICE will adjust the voltage amplitude to result in 1-Amp current amplitude through the circuit. If the constant-current source is connected to a circuit that has some impedance associated with it, Z(ω), then to keep the amplitude of the current constant, the voltage it applies will have to adjust. The voltage applied to the circuit, from the constant-current source, with a 1-Amp current amplitude, is V(ω) = Z(ω) × 1 Amp. The voltage across the current source, in volts, is numerically equal to the impedance of the circuit attached, in Ohms.

For example, if we attach a 1-Ohm resistor across the terminals, in order to maintain the constant current of 1 Amp, the voltage amplitude generated must be V = 1 Ohm × 1A = 1 v. If we attach a capacitor with capacitance C, the voltage amplitude at any frequency will be V = 1/ωC. Effectively, this circuit will emulate an impedance analyzer. Plotting the voltage versus the frequency is a measure of the magnitude of the impedance versus frequency for any circuit. The phase of the voltage is also a measure of the phase of the impedance.

To use SPICE to plot an impedance profile, we construct an AC constant-current source with amplitude of 1 A and connect the circuit under test across the terminals. The voltage measured across the current source is a direct measure of the impedance of the circuit. An example of a simple circuit is shown in Figure 3-10. As a trivial example, we connect a few different circuit elements to the impedance analyzer and plot their impedance profiles.

Figure 3-10. Left: An impedance analyzer in SPICE. The voltage across the constant-current source is a direct measure of the impedance of the circuit connected to it. Right: An example of the magnitude of the impedance of various circuit elements, calculated with the impedance analyzer in SPICE.

We can use this impedance analyzer to plot the impedance of any circuit model. Impedance is complex. It has not only magnitude information but also phase information. We can plot each of these separately in SPICE. The phase is also available in an AC simulation in SPICE. In Figure 3-11, we illustrate using the impedance analyzer to simulate the impedance of an RLC circuit model, approximating a real capacitor, plotting the magnitude and phase of the impedance across a wide frequency range.

Figure 3-11. Simulated magnitude and phase of an ideal RLC circuit. The phase shows the capacitive behavior at low frequency and the inductive behavior at high frequency.

It is exactly as expected. At low frequency, the phase of the impedance is –90 degrees, suggesting capacitive behavior. At high frequency the phase of the impedance is +90 degrees, suggesting inductive behavior.

### InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

## Overview

Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

## Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

### Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

### Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

### Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

### Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

### Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

### Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

## Other Collection and Use of Information

### Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

### Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

### Do Not Track

This site currently does not respond to Do Not Track signals.

## Security

Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

## Children

This site is not directed to children under the age of 13.

## Marketing

Pearson may send or direct marketing communications to users, provided that

• Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
• Such marketing is consistent with applicable law and Pearson's legal obligations.
• Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
• Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

## Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

## Choice/Opt-out

Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

## Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

## Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

## Sharing and Disclosure

Pearson may disclose personal information, as follows:

• As required by law.
• With the consent of the individual (or their parent, if the individual is a minor)
• In response to a subpoena, court order or legal process, to the extent permitted or required by law
• To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
• In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
• To investigate or address actual or suspected fraud or other illegal activities
• To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
• To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
• To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.