Home > Articles > Security > Network Security

This chapter is from the book

Pointer Arithmetic

Pointers are usually the first major hurdle that beginning C programmers encounter, as they can prove quite difficult to understand. The rules involving pointer arithmetic, dereferencing and indirection, pass-by-value semantics, pointer operator precedence, and pseudo-equivalence with arrays can be challenging to learn. The following sections focus on a few aspects of pointer arithmetic that might catch developers by surprise and lead to possible security exposures.

Pointer Overview

You know that a pointer is essentially a location in memory—an address—so it's a data type that's necessarily implementation dependent. You could have strikingly different pointer representations on different architectures, and pointers could be implemented in different fashions even on the 32-bit Intel architecture. For example, you could have 16-bit code, or even a compiler that transparently supported custom virtual memory schemes involving segments. So assume this discussion uses the common architecture of GCC or vc++ compilers for userland code on Intel machines.

You know that pointers probably have to be unsigned integers because valid virtual memory addresses can range from 0x0 to 0xffffffff. That said, it seems slightly odd when you subtract two pointers. Wouldn't a pointer need to somehow represent negative values as well? It turns out that the result of the subtraction isn't a pointer at all; instead, it's a signed integer type known as a ptrdiff_t.

Pointers can be freely converted into integers and into pointers of other types with the use of casts. However, the compiler makes no guarantee that the resulting pointer or integer is correctly aligned or points to a valid object. Therefore, pointers are one of the more implementation-dependent portions of the C language.

Pointer Arithmetic Overview

When you do arithmetic with a pointer, what occurs? Here's a simple example of adding 1 to a pointer:

short *j;

j=(short *)0x1234;

j = j + 1;

This code has a pointer to a short named j. It's initialized to an arbitrary fixed address, 0x1234. This is bad C code, but it serves to get the point across. As mentioned previously, you can treat pointers and integers interchangeably as long you use casts, but the results depend on the implementation. You might assume that after you add 1 to j, j is equal to 0x1235. However, as you probably know, this isn't what happens. j is actually 0x1236.

When C does arithmetic involving a pointer, it does the operation relative to the size of the pointer's target. So when you add 1 to a pointer to an object, the result is a pointer to the next object of that size in memory. In this example, the object is a short integer, which takes up 2 bytes (on the 32-bit Intel architecture), so the short following 0x1234 in memory is at location 0x1236. If you subtract 1, the result is the address of the short before the one at 0x1234, which is 0x1232. If you add 5, you get the address 0x123e, which is the fifth short past the one at 0x1234.

Another way to think of it is that a pointer to an object is treated as an array composed of one element of that object. So j, a pointer to a short, is treated like the array short j[1], which contains one short. Therefore, j + 2 would be equivalent to &j[2]. Table 6-11 shows this concept.

Table 6-11. Pointer Arithmetic and Memory

Pointer Expression

Array Expression


j - 2




j - 1





j or &j[0]



j + 1




j + 2




j + 3




j + 4




j + 5




Now look at the details of the important pointer arithmetic operators, covered in the following sections.


The rules for pointer addition are slightly more restrictive than you might expect. You can add an integer type to a pointer type or a pointer type to an integer type, but you can't add a pointer type to a pointer type. This makes sense when you consider what pointer addition actually does; the compiler wouldn't know which pointer to use as the base type and which to use as an index. For example, look at the following operation:

unsigned short *j;
unsigned long *k;

x = j+k;

This operation would be invalid because the compiler wouldn't know how to convert j or k into an index for the pointer arithmetic. You could certainly cast j or k into an integer, but the result would be unexpected, and it's unlikely someone would do this intentionally.

One interesting rule of C is that the subscript operator falls under the category of pointer addition. The C standard states that the subscript operator is equivalent to an expression involving addition in the following way:

E1[E2] is equivalent to (*((E1)+(E2)))

With this in mind, look at the following example:

char b[10];


The expression b[4] refers to the fifth object in the b character array. According to the rule, here's the equivalent way of writing it:


You know from your earlier analysis that b + 4, with b of type pointer to char, is the same as saying &b[4]; therefore, the expression would be like saying (*(&b[4])) or b[4].

Finally, note that the resulting type of the addition between an integer and a pointer is the type of the pointer.


Subtraction has similar rules to addition, except subtracting one pointer from another is permissible. When you subtract a pointer from a pointer of the same type, you're asking for the difference in the subscripts of the two elements. In this case, the resulting type isn't a pointer but a ptrdiff_t, which is a signed integer type. The C standard indicates it should be defined in the stddef.h header file.


Comparison between pointers works as you might expect. They consider the relative locations of the two pointers in the virtual address space. The resulting type is the same as with other comparisons: an integer type containing a 1 or 0.

Conditional Operator

The conditional operator (?) can have pointers as its last two operands, and it has to reconcile their types much as it does when used with arithmetic operands. It does this by applying all qualifiers either pointer type has to the resulting type.


Few vulnerabilities involving pointer arithmetic have been widely publicized, at least in the sense being described here. Plenty of vulnerabilities that involve manipulation of character pointers essentially boil down to miscounting buffer sizes, and although they technically qualify as pointer arithmetic errors, they aren't as subtle as pointer vulnerabilities can get. The more pernicious form of problems are those in which developers mistakenly perform arithmetic on pointers without realizing that their integer operands are being scaled by the size of the pointer's target. Consider the following code:

int buf[1024];
int *b=buf;

while (havedata() && b < buf + sizeof(buf))

The intent of b < buf + sizeof(buf) is to prevent b from advancing past buf[1023]. However, it actually prevents b from advancing past buf[4092]. Therefore, this code is potentially vulnerable to a fairly straightforward buffer overflow.

Listing 6-29 allocates a buffer and then copies the first path component from the argument string into the buffer. There's a length check protecting the wcscat function from overflowing the allocated buffer, but it's constructed incorrectly. Because the strings are wide characters, the pointer subtraction done to check the size of the input (sep - string) returns the difference of the two pointers in wide characters—that is, the difference between the two pointers in bytes divided by 2. Therefore, this length check succeeds as long as (sep – string) contains less than (MAXCHARS * 2) wide characters, which could be twice as much space as the allocated buffer can hold.

Listing 6-29. Pointer Arithmetic Vulnerability Example

wchar_t *copy_data(wchar_t *string)
    wchar *sep, *new;
    int size = MAXCHARS * sizeof(wchar);

    new = (wchar *)xmalloc(size);

    *new = '\0';

    if(*string != '/'){
        wcscpy(new, "/");
        size -= sizeof(wchar_t);

    sep = wstrchr(string, '/');

        sep = string + wcslen(string);
    if(sep - string >= (size – sizeof(wchar_t))
       die("too much data");

    *sep = '\0';

    wcscat(new, string);

    return new;

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020