Home > Articles > Programming > Windows Programming

  • Print
  • + Share This
This chapter is from the book

Using the Built-In Column Types

Using a text box column is straightforward enough: you data bind to something that can be rendered as text, or set the Value property on a cell to something that can be converted to a string, and you are done. Using some of the other cell types may not be as easy to figure out, so this section steps through each of the built-in column types, pointing out its capabilities and how to use it.

The first thing to realize is that even though most of the functionality is surfaced at the cell level in a DataGridView and it can support spreadsheet-like behavior (as described later in this chapter), the grid is still primarily a tabular control. The columns in the grid usually represent information that can be determined at design time—specifically, the schema of the data that will be presented. The rows are usually determined dynamically at runtime and map to the structure specified by the columns. You may occasionally programmatically create columns for rendering based on dynamic data schemas at runtime, but even then you are first defining the data’s shape (the columns) and then providing the data (the rows).

As a result, for each of the built-in cell types that the grid is capable of displaying, there is a corresponding column type designed to contain cells of that type. Each cell type is derived from the DataGridViewCell class, and each of the corresponding column types is derived from DataGridViewColumn. Each of the column types expose properties to aid in the data’s data binding, and each column type corresponds to the expected content for the type of cells that the column contains. Likewise, each derived cell type may expose additional properties based on the type of content it is designed to display.

Because each built-in column type is different in subtle ways, it’s best to cover them one at a time. However, since all of the cell types contained by the column types derive from the same base class, there are a number of properties from the base class that you’ll use for controlling and accessing cell content. The properties of the DataGridViewCell base class are described in Table 6.1.

DataGridViewCell Properties

View Table

The DataGridViewColumn (discussed earlier in this chapter) is the base class from which built-in column types derive. This class also has a number of useful properties that you can set to drive the behavior of the grid and that the type-specific column classes inherit. These properties are described in Table 6.2.

DataGridViewColumn Properties

View Table

There are a number of built-in column types that are available for using with the DataGridView control corresponding to the most common control types that developers want to include in a grid. The following subsections describe each of the built-in column types and what is involved in using them.


This is the default type of column (as described earlier in this chapter), and it displays text within the contained cells, which are of type DataGridViewTextBoxCell. Data that is bound to this column type and values set on the cell have to be of a type that can be converted to a string.

This column type supports editing if the ReadOnly property is true (the default) and the focus in on the cell. To enter editing mode, press F2, type in characters, or click in the cell. This embeds a separate editing control of type DataGridViewTextBoxEditingControl, which derives from TextBox. This type enables in-place editing for the grid value, like you are used to for text box controls. The value in the text box is treated as a transient value until the focus leaves the cell; then the CellParsing event fires, and the value is pushed into the underlying data store if data bound or the CellValuePushed event fires if in virtual mode.


This column type displays cells of type DataGridViewButtonCell, which is sort of a fancy form of read-only text cell. A button cell lets you have a button-push experience embedded in the grid, which you can use to trigger whatever action makes sense for your application. The button cell renders itself with a border that looks like any other button control, and when the user clicks on it, the cell renders again with a depressed offset so that you get an action like a button. To handle the “button click,” you need to handle the CellClick event on the grid, determine if it was a button cell that was clicked, and then take the appropriate action for your application. This involves taking the event argument from the CellClick event, checking its ColumnIndex property against the column index of button columns in your grid, and then calling the button click handling code from there based on the row index, or the contents of that cell or others in that row.


Like the button column, this is another form of rendering a text cell that gives the user a visual cue that clicking on it will invoke some action. This column type contains cells of type DataGridViewLinkCell and renders the text in the cell to look like a hyperlink. Typically, clicking on a link “navigates” the user somewhere else, so you might use this kind of column if you are going to pop up another window or modify the contents of another control based on the user clicking on the link. To do so, you handle the CellClick event as described previously for the button, determine if you are in a cell containing a link, and take the appropriate action based on that link. You will have to derive the context of what action you should take either from the cell’s contents or other cells in that row or column.


By now you are probably picking up the pattern, and as you would guess, this column type contains cells of type DataGridViewCheckBoxCell. This cell type renders a CheckBox-like control that supports tri-state rendering like a CheckBox control.

The values that this cell type supports depend on whether you set the cell or column type into ThreeState mode or not. If the ThreeState property is set to false (the default), then a value of null or false will leave the check box unchecked; a value of true will check the box. If ThreeState is set to true, then the Value property of the cell can be null or one of the CheckState enumeration values. If null and ThreeState is true, then the check box will be rendered in the indeterminate state (a square filling it). The CheckState enumeration values are Unchecked, Checked, and Indeterminate, which are self-explanatory. The cell’s Value property can be set explicitly through programmatic code that accesses the cell in the Cells collection of the row, or it can be set through data binding.


This column, not surprisingly, contains cells of type DataGridViewImageCell, which support the rendering of images directly within the grid’s cells. This cell type provides a very handy and easy-to-use capability in the DataGridView control that used to be fairly painful to achieve with the DataGrid control. This column type exposes Image and ImageLayout properties in addition to the usual base class properties. Setting the column’s Image property results in that image being displayed by default for all the cells in that column. The ImageLayout property takes a DataGridViewImageCellLayout enumeration value. The values of this enumeration and their effect on the rendering of an image in the grid are described in Table 6.3.

DataGridViewImageCellLayout Enumeration Values and Effects




This is the default and indicates that the layout behavior has not been explicitly specified. The resulting behavior of the cell is the same as if Normal had been explicitly set.


The image is rendered at its native size and centered in the cell. Depending on the size of the cell, any portions of the image that are outside the bounds of the cell will be clipped.


The image is stretched or shrunk in both width and height so that it fills the cell and no clipping occurs. No attempt is made to maintain the aspect ratio (width/height) of the image.


The image is resized so that it fits within the cell without clipping, and the aspect ratio (width/height) is maintained so that no distortion of the image occurs.

In addition to setting a default image at the column level, you can set the Value property at the cell level, either explicitly through code or implicitly through data binding. The value can be set to any type that can be converted to an Image object for display in the cell. Natively in .NET, this means that the value can either be an Image or a byte array that contains a serialized Image.


This column type contains cells of type DataGridViewComboBoxCell, which renders itself like a standard ComboBox control within the cell. This column type is definitely the most complex built-in column type for the DataGridView, and it exposes a number of properties that drive its behavior, as described in Table 6.4.

DataGridViewComboBoxColumn Properties

View Table

The combo box cells support edit mode, and users can type in a value for autocompletion purposes or select values from a drop-down list. When in edit mode, this cell type hosts a control that derives from the ComboBox control, so all of its functionality is exposed when the cell is switched into edit mode.

The Value property represents the currently selected value in the combo box. It may contain the displayed text value in the combo box, or it may contain the underlying ValueMember value for the selected item, depending on what you set for the DataSource, DisplayMember, and ValueMember properties. The FormattedValue property, inherited from the base class, always contains the formatted text for the selected item that is being displayed in the combo box.

Data binding this column type or the cells in it works just like data binding a standalone ComboBox control. You set the DataSource, DisplayMember, and ValueMember properties, and the items in the data source collection are rendered in the drop-down list using the value of the data member that is identified as the display member:

toCountryColumn.DataSource = m_CountriesBindingSource;
toCountryColumn.DisplayMember = "CountryName";
toCountryColumn.ValueMember = "CountryID";

The sample code that accompanies this chapter contains a simple application called ColumnTypes that demonstrates how the code interacts with each of the built-in column types described in this chapter.

  • + Share This
  • 🔖 Save To Your Account