Home > Articles > Programming > Graphic Programming

  • Print
  • + Share This
This chapter is from the book

6.3 Fragment Shader

The typical purpose of a fragment shader is to compute the color to be applied to a fragment or to compute the depth value for the fragment or both. In this case (and indeed with most fragment shaders), we’re concerned only about the color of the fragment. We’re perfectly happy using the depth value that’s been computed by the OpenGL rasterization stage. Therefore, the entire purpose of this shader is to compute the color of the current fragment.

Our brick fragment shader starts off by defining a few more uniform variables than did the vertex shader. The brick pattern that will be rendered on our geometry is parameterized to make it easier to modify. The parameters that are constant across an entire primitive can be stored as uniform variables and initialized (and later modified) by the application. This makes it easy to expose these controls to the end user for modification through user interface elements such as sliders and color pickers. The brick fragment shader uses the parameters that are illustrated in Figure 6.1. These are defined as uniform variables as follows:

uniform vec3  BrickColor, MortarColor;
uniform vec2  BrickSize;
uniform vec2  BrickPct;

We want our brick pattern to be applied consistently to our geometry in order to have the object look the same no matter where it is placed in the scene or how it is rotated. The key to determining the placement of the brick pattern is the modeling coordinate position that is computed by the vertex shader and passed in the varying variable MCposition:

varying vec2 MCposition;

This variable was computed at each vertex by the vertex shader in the previous section, and it is interpolated across the primitive and made available to the fragment shader at each fragment location. Our fragment shader can use this information to determine where the fragment location is in relation to the algorithmically defined brick pattern. The other varying variable that is provided as input to the fragment shader is defined as follows:

varying float LightIntensity;

This varying variable contains the interpolated value for the light intensity that we computed at each vertex in our vertex shader. Note that both of the varying variables in our fragment shader are defined with the same type that was used to define them in our vertex shader. A link error would be generated if this were not the case.

With our uniform and varying variables defined, we can begin with the actual code for the brick fragment shader:

void main()
{
    vec3  color;
    vec2  position, useBrick;

In this shader, we do things more like we would in C and define all our local variables before they’re used at the beginning of our main function. In some cases, this can make the code a little cleaner or easier to read, but it is mostly a matter of personal preference and coding style. The first actual line of code in our brick fragment shader computes values for the local vec2 variable position:

position = MCposition / BrickSize;

This statement divides the fragment’s x position in modeling coordinates by the brick column width and the y position in modeling coordinates by the brick row height. This gives us a “brick row number” (position.y) and a “brick number” within that row (position.x). Keep in mind that these are signed, floating-point values, so it is perfectly reasonable to have negative row and brick numbers as a result of this computation.

Next, we use a conditional to determine whether the fragment is in a row of bricks that is offset (see Figure 6.3):

if (fract(position.y * 0.5) > 0.5)
    position.x += 0.5;
06fig03.gif

Figure 6.3 A graph of the function fract(position.y * 0.5) shows how the even/odd row determination is made. The result of this function is compared against 0.5. If the value is greater than 0.5, a value of 0.5 is added to position.x; otherwise, nothing is added. The result is that rows whose integer values are 1, 3, 5, . . ., are shifted half a brick position to the right.

The “brick row number” (position.y) is multiplied by 0.5, the integer part is dropped by the fract function, and the result is compared to 0.5. Half the time (or every other row), this comparison is true, and the “brick number” value (position.x) is incremented by 0.5 to offset the entire row by half the width of a brick. This is illustrated by the graph in Figure 6.3.

Following this, we compute the fragment’s location within the current brick:

position = fract(position);

This computation gives us the vertical and horizontal position within a single brick. This position serves as the basis for determining whether to use the brick color or the mortar color.

Figure 6.4 shows how we might visualize the results of the fragment shader to this point. If we were to apply this shader to a square with modeling coordinates of (–1.0, –1.0) at the lower-left corner and (1.0, 1.0) at the upper right, our partially completed shader would show the beginnings of the brick pattern we’re after. Because the overall width of the square is 2.0 units in modeling coordinates, our division of MCposition.x by BrickSize.x gives us 2.0 / 0.3 or roughly six and two-thirds bricks across, as we see in Figure 6.4. Similarly the division of MCposition.y by BrickSize.y gives us 2.0 / 0.15 or roughly thirteen and two-thirds rows of bricks from top to bottom. For this illustration, we shaded each fragment by summing the fractional part of position.x and position.y, multiplying the result by 0.5, and then storing this value in the red, green, and blue components of gl_FragColor.

06fig04.gif

Figure 6.4 Intermediate results of brick fragment shader

To complete our brick shader, we need a function that gives us a value of 1.0 when the brick color should be used and 0 when the mortar color should be used. If we can achieve this, we can end up with a simple way to choose the appropriate color. We know that we’re working with a horizontal component of the brick texture function and a vertical component. If we can create the desired function for the horizontal component and the desired function for the vertical component, we can just multiply the two values together to get our final answer. If the result of either of the individual functions is 0 (mortar color), the multiplication causes the final answer to be 0; otherwise, it is 1.0, and the brick color is used.

We use the step function to achieve the desired effect. The step function takes two arguments, an edge (or threshold) and a parameter to test against that edge. If the value of the parameter to be tested is less than the edge value, the function returns 0; otherwise, it returns 1.0. (Refer to Figure 5.11 for a graph of this function). In typical use, the step function produces a pattern of pulses (i.e., a square wave) whereby the function starts at 0 and rises to 1.0 when the threshold is reached. We can get a function that starts at 1.0 and drops to 0 just by reversing the order of the two arguments provided to this function:

useBrick = step(position, BrickPct);

In this line of code, we compute two values that tell us whether we are in the brick or in the mortar in the horizontal direction (useBrick.x) and in the vertical direction (useBrick.y). The built-in function step produces a value of 0 when BrickPct.x < position.x and a value of 1.0 when BrickPct.x >= position.x. Because of the fract function, we know that position.x varies from (0,1). The variable BrickPct is a uniform variable, so its value is constant across the primitive. This means that the value of useBrick.x is 1.0 when the brick color should be used and 0 when the mortar color should be used as we move horizontally. The same thing is done in the vertical direction, with position.y and BrickPct.y computing the value for useBrick.y. By multiplying useBrick.x by useBrick.y, we can get a value of 0 or 1.0 that lets us select the appropriate color for the fragment. The periodic step function for the horizontal component of the brick pattern is illustrated in Figure 6.5.

06fig05.gif

Figure 6.5 The periodic step function that produces the horizontal component of the procedural brick pattern

The values of BrickPct.x and BrickPct.y can be computed by the application to give a uniform mortar width in both directions based on the ratio of column width to row height, or the values can be chosen arbitrarily to give a mortar appearance that looks right.

All that remains is to compute our final color value and store it in the special variable gl_FragColor:

    color  = mix(MortarColor, BrickColor, useBrick.x * useBrick.y);
    color *= LightIntensity;
    gl_FragColor = vec4(color, 1.0);
}

Here we compute the color of the fragment and store it in the local variable color. We use the built-in function mix to choose the brick color or the mortar color, depending on the value of useBrick.x * useBrick.y. Because useBrick.x and useBrick.y can have values of only 0 (mortar) or 1.0 (brick), we choose the brick color only if both values are 1.0; otherwise, we choose the mortar color.

The resulting value is then multiplied by the light intensity, and that result is stored in the local variable color. This local variable is a vec3, and gl_FragColor is defined as a vec4, so we create our final color value by using a constructor to add a fourth component (alpha) equal to 1.0 and assign the result to the built-in variable gl_FragColor.

The source code for the complete fragment shader is shown in Listing 6.2.

Example 6.2. Source code for brick fragment shader

uniform vec3  BrickColor, MortarColor;
uniform vec2  BrickSize;
uniform vec2  BrickPct;

varying vec2  MCposition;
varying float LightIntensity;

void main()
{
    vec3  color;
    vec2  position, useBrick;
    position = MCposition / BrickSize;

    if (fract(position.y * 0.5) > 0.5)
        position.x += 0.5;

    position = fract(position);

    useBrick = step(position, BrickPct);

    color  = mix(MortarColor, BrickColor, useBrick.x * useBrick.y);
    color *= LightIntensity;
    gl_FragColor = vec4(color, 1.0);
}

When comparing this shader to the vertex shader in the previous example, we notice one of the key features of the OpenGL Shading Language, namely, that the language used to write these two shaders is almost identical. Both shaders have a main function, some uniform variables, and some local variables; expressions are the same; built-in functions are called in the same way; constructors are used in the same way; and so on. The only perceptible differences exhibited by these two shaders are (A) the vertex shader accesses built-in attribute variables, such as gl_Vertex and gl_Normal, (B) the vertex shader writes to the built-in variable gl_Position, whereas the fragment shader writes to the built-in variable gl_FragColor, and (C) the varying variables are written by the vertex shader and are read by the fragment shader.

The application code to create and use these shaders is shown in Section 7.13, after the OpenGL Shading Language API has been presented. The result of rendering some simple objects with these shaders is shown in Figure 6.6. A color version of the result is shown in Color Plate 35.

06fig06.jpg

Figure 6.6 A flat polygon, a sphere, and a torus rendered with the brick shaders

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020