Home > Articles

This chapter is from the book

The Last Resort: Wireless DoS Attacks

Multiple DoS attacks against various wireless (and even wired) protocols, security protocols included, are mentioned elsewhere in the chapter. In many cases these attacks can be part of a sophisticated penetration plan and assist in social engineering, man-in-the-middle attempts, stealing, or cracking secret keys. However, a desperate attacker might launch a DoS attack to "compensate" for the effort spent on failed access attempts. Besides, wireless DoS attacks per se can be launched by the competitors, for political reasons, out of curiosity, and so forth; the situation is no different from DoS attacks on public networks such as the Internet. Unfortunately, due to the nature of the RF medium and design of the core 802.11 protocols, wireless networks cannot be protected against Layer 1 and certain Layer 2 DoS attacks. This is why, in our opinion, 802.11 links should not be used for mission-critical applications in theory. In the real world, there are cases when 802.11 is the only choice, and cases of system administrators or network designers being unaware or dismissive of the problem and going forward with the WLAN installation anyway. This is why you, as a security professional, should be able to demonstrate various wireless DoS dangers to your clients. If you are a system administrator or a wireless enthusiast, you can always check out how wireless DoS attacks work on your network, perhaps to know what to expect when your WLAN is attacked and to generate IDS signatures. For your convenience, we have categorized known wireless DoS attacks:

1 Physical Layer Attacks or Jamming

There is nothing you can do about RF jamming short of triangulating the jamming device and tracking its owner. Even then the jammer owner is likely to claim that he or she did nothing illegal, because anyone is allowed to transmit anything in the ISM band. You will have to prove that the attacker's transmission is intentional and that he or she has exceeded the FCC EIRP limit (most likely this is the case) in a court of law. The jamming device can be a custom-built transmitter or a high-output wireless client card or even access point (e.g., Demarctech offers an AP with 500-mW output!) flooding the selected channel(s) with junk traffic. FakeAP, Void11, File2air, or any other 802.11 frame-generating tool can be used to run the flood. A completely custom-built jammer can employ harmonics and transmit at about 1.2 GHz or even about 600 MHz. Such a device would be easier to build than the 2.4 to 2.5 GHz jammer, and you'll need a decent, expensive frequency counter to discover the attack and its source. If one wants to build a very powerful 2.4 to 2.5 GHz jamming device, the core for such a device is elsewhere; it's called a microwave oven's magnetron. Check out Vjacheslav (Slava) Persion's Web page (http://www.voltagelabs.com/pages/projects/herf005/) for examples of microwave magnetron-based transmitters in action. The main disadvantages of Layer 1 attacks from the attacker's perspective are time, effort, and expenses to build a jammer, and the fact that such a device would have to be positioned quite close to the attacked network for an efficient attack. It is very likely that once the attack is discovered, the jammer is lost and can serve as hard evidence in court.

2 Spoofed Deassociation and Deauthentication Frames Floods

These attacks are probably the most well-known and used DoS attacks on 802.11 LANs. In the beginning of this chapter we discussed deauthentication frames floods when applied to bypassing MAC address filtering and closed ESSIDs.

Just as in the case of jamming, there is little you can do to eliminate the threat. The 802.11i developers have discussed the possibility of authenticated deauthentication (pardon the tautology) and deassociation. However, as far as we know, the idea did not get any further in practical terms. A variety of tools can be used to launch deauthentication and deassociation floods, including dinject, wlan_jack, File2air, Void11, and omerta. Void11 is probably the most devastating tool mentioned because it provides "canned" mass flood and match list flood capabilities:

arhontus# void11_hopper >/dev/null &
arhontus# void11_penetration -D wlan0 -S ihatethisnetwork -m 30


arhontus# void11_hopper >/dev/null &
arhontus# echo DE:AD:BE:EF:13:37 > matchlist
arhontus# void11_penetration -l matchlist -D wlan0

The capability to attack hosts from a matchlist can be very useful when implementing active defenses on your WLAN.

An extension of the deauthentication or deassociation frames flood attack is sequential multiframe attacks, such as sending deauthentication or deassociation frames followed by a forged probe responses and beacon frames flood providing incorrect information (ESSID, channel) about an access point to associate with. If 802.1x is used on the network, an EAP-Failure frame can preclude the deauthenticate or deassociate + fake probe responses frames train. Such an attack guarantees that the targeted host is dropped from the WLAN like a lead weight and will have difficulties reassociating. A forged probe responses flood might or might not have a significant detrimental effect on reassociation, depending on the passive versus active scanning priority implemented by the attacked host wireless card firmware. An example of deauthenticate + fake probe response frame attack is given in the file2air README file; this or other (void11 + FakeAP?) tools can be used to launch this type of attack.

3 Spoofed Malformed Authentication Frame Attack

This attack is implemented in practice by the fata_jack utility written for AirJack by "loud-fat-bloke" (Mark Osborne; http://www.loud-fat-bloke.co.uk). It is based on the wlan_jack code, but sends altered spoofed authentication request frames instead. As the author of the tool states, the sent frame has a destination address of the AP and a source address of the attacked client and is an authentication frame with an unknown algorithm (type 2) and a sequence number and status code both set to 0xffff.

As a result of an attack, the AP sends the impersonated client a reply frame. This frame says "Received an authentication frame with authentication sequence transaction sequence number out of expected sequence" (i.e., code 0x000e). This causes the client to become unauthenticated from the AP. In our experience, the client becomes deassociated and starts behaving erratically, exhibiting difficulties reassociating and sudden channel hops.

4 Filling Up the Access Point Association and Authentication Buffers

Many access points do not implement any protection against these buffers being overflowed and will crash after an excessive amount of connections are established or authentication requests sent. This applies to software access points as well; for example, an OpenBSD 3.1-based AP. Void11 implements both association and authentication frames floods with random flooding host interface MAC addresses. A small progtest utility that comes as an example code with libwlan for Linux HostAP also associates a great number of fake stations with an access point to see if it will crash or freeze. Alternatively, you can associate to the AP and then start fast MAC address changes at the associated interface. This variation of the association buffer overflow attack is implemented by a macfld.pl script by Joshua Wright:

arhontus# perl macfld.pl
macfld: Need to specify number of MAC's to generate with -c|--count
  macfld [options]
    -c, --count
    -u, --usleep (microseconds)
    -f, --dataflush
    -p, --pingtest
    -i, --interface WLANINT
    -a, --apaddr
    -s, --srcaddr
    -d, --debug
    -h, --help

We strongly believe that the access point and wireless bridge manufacturers should implement these and similar tools to test their equipment before the production cycle begins.

5 Frame Deletion Attack

The idea behind this attack is to corrupt the bypassing frame's CRC-32 so that the receiving host will drop it. At the same time, the attacker sends a spoofed ACK frame to the sender telling it that the frame was successfully received. As a result, the corrupt frame is efficiently deleted without being resent. Because authenticating all CSMA/CA frames is not resource-feasible, there is nothing that can be done to stop frame deletion attacks. To corrupt the CRC, the attacker might try to send the same frame with the corrupt CRC at the same time with the legitimate sender or emit a lot of noise when the sender transmits the last 4 bytes of the frame. Providing a reliable frame CRC corruption is probably the trickiest part of the attack. Of course, if implemented successfully, such an attack is not easy to detect or defend against. However, at the time of writing, it is purely theoretical and we have yet to see someone making the theoretical practical.

6 DoS Attacks Based on Specific Wireless Network Settings

There are somewhat obscure attack possibilities based on exploiting specific Layer 2 settings of 802.11 LANs, such as the power-saving mode or virtual carrier sense (RTS/CTS)-enabled networks.

In power-saving mode attacks, a cracker can pretend to be the sleeping client and poll the frames accumulated for its target from the access point. After the frames are retrieved, the access point discards the buffer contents. Thus, the legitimate client never receives them. Alternatively, our cracker can spoof traffic indication map (TIM) frames from the access point. These frames tell the sleeping clients whether the data has arrived for them to wake up and poll it. If a cracker can deceive the clients to believe that no pending data was received by the AP, they remain asleep. In the meanwhile, the access point accumulates the unpolled packets and is forced to discard them at some point or suffer a buffer overflow. This attack is more difficult to accomplish, because the cracker has to find the way to stop the valid TIM frames from reaching the intended hosts. Finally, a cracker can spoof beacons with TIM field set or ATIM frames on ad-hoc WLANs to keep the hosts awake even if there is no data to poll. This would efficiently cancel the power-saving mode operation and increase the client host's battery drain.

The DoS attacks against the virtual carrier sense-implementing networks are prioritization attacks by nature. A cracker can constantly flood the network with request to send (RTS) frames with a large transmission duration field set, thus reserving the medium for his or her traffic and denying other hosts from accessing the communication channel. The network is going to be overwhelmed by the clear to send (CTS) responses to every RTS frame received. The hosts on the WLAN will have to obey these CTS frames and cease transmitting.

Although there are no specific tools available to launch these attacks, in practice, File2air, a hex editor, and some additional shell scripting come to mind.

7 Attacks Against 802.11i Implementations

Nothing is without a flaw, and new security standards can introduce new potential security flaws even as they fix the old ones. The risk/benefit ratio is what matters in the end, and in the case of the 802.11i security standard the balance is positive: It is better to have it than not. Nevertheless, there are a few problems with 802.11i implementations that can be exploited to launch rather sneaky DoS attacks. In this chapter we have already reviewed DoS attacks against 802.1x/EAP authentication protocols that might force an unsuspecting network administrator to switch to other, less secure means of user authentication, if persistent. Another avenue for possible DoS attacks against 802.11i-protected networks is corrupting the TKIP Michael message integrity checksum. In accordance with the standard, if more than one corrupt MIC frame is detected in a second, the receiver shuts the connection down for a minute and generates a new session key. Thus, a cracker corrupting the frame MICs a few times every 59 seconds should be able to keep the link down. However, launching this attack is not as easy as it seems. Because understanding all the "whys" and "why nots" of the MIC corruption attack requires an understanding of MIC (and TKIP in general) operations, a detailed discussion of this attack belongs in Chapter 12, where you can find it. Here we state that running this attack by sending different MIC frames with the same IV does not appear to be easy to implement or even possible. An attacker would have to resort to means similar to the CRC-32 corruption in the frame deletion attack described earlier; for example, emit a jamming signal when the part of the frame containing the MIC is transmitted. For now, like the frame deletion attack, the corrupt MIC attack remains purely theoretical.

To conclude this chapter, even the latest wireless safeguards aren't 100 percent safe. In the following discussion, you are invited to observe (or participate in) the security horrors that can follow a successful attack on a WLAN.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020