Home > Articles > Networking > Network Design & Architecture

HyperTransport Flow Control

Explore background information on bus flow control and master efficient management of transaction flow with HyperTransport. You will also learn about HyperTransport flow control, which is used to throttle the movement of packets across each link interface.
This chapter is from the book

This chapter is from the book

The Previous Chapter

The previous chapter described the use of HyperTransport control and data packets to construct HyperTransport link transactions. Control packet types include Information, Request, and Response variants; data packets contain a payload of 0-64 valid bytes. The transmission, structure, and use of each packet type is presented.

This Chapter

This chapter describes HyperTransport flow control, used to throttle the movement of packets across each link interface. On a high-performance connection such as HyperTransport, efficient management of transaction flow is nearly as important as the raw bandwidth made possible by clock speed and data bus width. Topics covered here include background information on bus flow control and the initialization and use of the HyperTransport virtual channel flow control buffer mechanism defined for each transmitter-receiver pair.

The Next Chapter

The next chapter describes the rules governing acceptance, forwarding, and rejection of packets seen by HyperTransport devices. Several factors come into play in routing, including the packet type, the direction it is moving, and the device type which sees it. A related topic also covered in this chapter is the fairness algorithm used by a tunnel device as it inserts its own packets into the traffic it forwards upstream on behalf of devices below it. The HyperTransport specification provides a fairness algorithm and a hardware method for tunnel management packet insertion.

The Problem

On any bus where an agent initiates the exchange of information (commands, data, status, etc.) with a target, a number of things can cause a delay (or even end) the normal completion of the intended transfer. The throttling of information delivery on a bus is referred to as flow control. PCI is a good example of a bus protocol which has reasonably high burst bandwidth, but is subject to performance hits caused by an unsophisticated flow control mechanism. Before looking at the HyperTransport approach to flow control, some of the general problems in bus flow control are described in the following section in terms of the PCI protocol. Refer to Figure 5-1 on page 100.

Figure 5-1Figure 5-1: PCI Interface Handshake Signals

How PCI Handles Flow Control

While the PCI specification permits 64-bit data bus and 66MHz clock options, a generic PCI bus carries only 32 bits (4 bytes) of data and runs at a 33MHz clock speed. This means that the burst bandwidth for this bus is 132MB/s (4 bytes x 33MHz = 132MB/s). In many systems the PCI bus is populated by all sorts of high- and low-performance peripherals such as hard drives, graphics adapters, and serial port adapters. All PCI bus master devices must take turns accessing the shared bus and performing their transfers. The priority of a bus master in accessing the bus and the amount of time it is allowed to retain control of the bus is a function of PCI arbitration. In a typical computer system, the PCI arbiter logic resides in the system chipset.

Once a PCI bus master has won arbitration and verifies the bus is idle, it commences its transaction. After decoding the address and command sent by the master, one target claims the cycle by asserting a signal called DEVSEL#. At this point, if both devices are prepared, either write data will be sent by the initiator or read data will be returned by the target. For cases where either the master or target are not prepared for full-speed transfer of some or all of the data, flow control comes into play. In PCI there are a number of cases that must be dealt with.

PCI Target Flow Control Problems

PCI Target Not Ready To Start

In some cases, a PCI device being targeted for transmission is not prepared to transfer any data at all. This could happen if the target is off-line, does not have buffer space for write data being sent to it, or does not have requested read data available. It may also occur if the transaction must cross a bridge device to a different bus. Many bus protocols, including PCI, place a limit on how long the bus may be stalled before completing a transaction; in cases where a target can't meet the requirement for even the first data, a mechanism is required to indicate the transaction should be abandoned and re-attempted later. PCI calls the target cancellation of a transaction (without transferring any data) a Retry; a Retry is indicated when a target asserts the STOP# signal (instead if TRDY#) in the first data phase.

PCI Target Starts Data Transfer, But Can't Continue

Another possibility is that a transaction started properly, some data has transferred, but at some point before completion the target "realizes" it can't continue the transfer within the time allowed by the protocol. The target must indicate to the master that the transaction must be suspended (and resumed later at the point where it left off). PCI calls this target suspension of a transaction (with a partial transfer of data) a Disconnect. A Disconnect is signalled when the target asserts the STOP# signal in a data phase after the first one.

PCI Target Starts, Can Continue, But Needs More Time

Sometimes a transaction is underway and the target requires additional time to complete transmission of a particular data item; in this case, it does not need to suspend the transaction altogether, but simply stretch one or more data phases. The generic name for this is wait-state insertion. Wait states are a reasonable alternative to Retry and Disconnect if there are not too many of them; when there are excessive wait states, bus performance would be better served by the devices giving up the bus and allowing it to be used by other devices while they prepare for the resumption of the suspended transaction. PCI targets de-assert the TRDY# signal during any data phase to indicate wait states. A target must be prepared to complete each data phase within 8 PCI clocks (maximum of seven wait states), except for the first data phase which it must complete within 16 clocks. If a target cannot meet the "16 and 8 tick" rules for completing a data phase, it must signal Retry or Disconnect instead.

PCI Initiator Flow Control Problems

While many flow control problems are associated with the target of a transaction, there are a couple which may occur on the initiator side. Again, the cases are described in terms of PCI protocol.

PCI Initiator Starts, But Can't Continue

Some bus protocols also allow an initiator to break off a transaction early in the event it can't accept the next read data or source the next write data within the time allowed by the protocol — even with wait states. PCI initiators suspend transactions simply by de-asserting the FRAME# signal early. As a rule, the master will re-arbitrate later for the PCI bus and perform a new transaction which picks up from where it left off previously.

PCI Initiator Starts, Can Continue, But Needs Wait-States

Some bus protocols allow an initiator to insert wait states in a transfer, just as the target may. Other bus protocols (e.g. PCI-X) only allow targets to insert wait states — based on the assumption that a device which starts a transaction should be ready to complete it before requesting the bus. In any case, PCI initiators de-assert the IRDY# signal to indicate wait states. An initiator must be prepared to complete each data phase within 8 clocks (maximum of seven wait states); if it can't meet this rule for any data phase, it must instead suspend the transaction by de-asserting FRAME#.

All PCI Flow Control Problems Hurt Performance

Each of the initiator and target flow control problems just described impact PCI bus performance for both the devices involved in the transfer, and for devices waiting to access the bus. While not every transaction is afflicted with target retries and disconnects, or early de-assertion of FRAME# by initiators, they happen enough to make effective bandwidth considerably less than 132MB/s on the PCI bus. In addition, arbitration and flow control uncertainties make system performance difficult to estimate.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020