Home > Articles > Software Development & Management

  • Print
  • + Share This
This chapter is from the book

6.3 Pool Allocation Pattern

The Static Allocation Pattern only works well for systems that are, well, static in nature. Sometimes you need sets of objects for different purposes at different times during execution. When this is the case, the Pool Allocation Pattern works well by creating pools of objects, created at startup, available to clients upon request. This pattern doesn't address needs for dynamic memory but still provides for the creation of more complex programs than the Static Allocation Pattern.

6.3.1 Abstract

In many applications, objects may be required by a large number of clients. For example, many clients may need to create data objects or message objects as the system operates in a complex, changing environment. The need for these objects may come and go, and it may not be possible to predict an optimal dispersement of the objects even if it is possible to bound the total number of objects needed. In this case, it makes sense to have pools of these objects—created but not necessarily initialized and available upon request. Clients can request them as necessary and release them back to the pool when they're done with them.

6.3.2 Problem

The prototypical candidate system for the Pooled Allocation Pattern is a system that cannot deal with the issues of dynamic memory allocation, but it is too complex to permit a static allocation of all objects. Typically, a number of similar, typically small, objects, such as events, messages, or data objects, may need to be created and destroyed but are not needed a priori by any particular clients for the entire run-time of the system.

6.3.3 Pattern Structure

Figure 6-3 shows the Pooled Allocation Pattern. The parameterized class Generic Pool Manager is instantiated to create the specific Pooled-

Figure 6-3Figure 6-3: Pooled Allocation Pattern

Class required. The instantiated class is shown as Resource Pool Manager. Typically, there will be a number of such instantiated pools in the system, although only one for any specific PooledClass type. Each pool creates and then manages its set of objects, allocating them (and returning a pointer, reference, or handle to the allocated object to the client) and releasing them (putting the released object back into the freeObject list) upon request. Usually, the entire set of pools is created at system startup and never deleted. This removes the problems associated with dynamic memory allocation but preserves many of the benefits.

6.3.4 Collaboration Roles

  • Client

    The Client is any object in the system that has a need to use one or more objects of class resourceClass. To request an object, they call ResourcePool::allocate() and give the object back to the pool by calling ResourcePool::release(). As we will see later in the Implementation Strategies section, in C++, the new() and delete() operators may be overridden to call the allocate() and release() operations to hide the infrastructure from the client.

  • Generic Pool Manager

    Generic Pool Manager is a parameterized (template) class that uses the formal parameters pooledClass and BufferSize to specify the class of the objects pooled and the number of them to create, respectively. The operations of Generic Pool Manager are written to work in terms of these formal parameters.

  • PooledClass

    PooledClass is a formal parameter to the Generic Pool Manager parameterized class. Practically, it may be realized with just about any object desired, but most often, they are simple, small classes used by a variety of clients.

  • Resource Pool Manager

    The Resource Pool Manager class is the instantiated Generic Pool Manager, in which a specific class (ResourceClass) and a specific number of objects (size) are passed as actual parameters. There may be any number of such instantiations in the system but only one per Resource Class.

6.3.5 Consequences

The Pooled Allocation Pattern has a number of advantages over the Static Allocation Pattern. Since memory is allocated at startup and never deleted, there is no problem with the nondeterministic timing of dynamic memory allocation during run-time or memory fragmentation. The system, however, can handle nondeterministic allocation of certain classes of objects. Thus, the pattern scales to more complex systems than does the Static Allocation Pattern. It is especially applicable to systems where a number of common objects may be needed by many different clients, but it cannot be determined at design time how to distribute these objects. This pattern allows the objects to be distributed on an as-needed basis during the execution of the system. Because all pooled objects are created at system startup, the decision about the optimal number of different kinds of objects must be made at design time. For example, it might be decided that as a worst case, 1000 message objects, 5000 data sample objects, and so forth, may be required. If this turns out to be an erroneous decision, the system may fail at startup or later during execution. Further, the system cannot grow to meet new system demands, so the pattern is best applied to systems that are well understood and relatively predictable in their demands on system resources.

A note for Java programmers: This pattern is particularly helpful for Java applications because memory is never released. This pattern avoids fragmentation and the run-time overhead for object allocation, but the garbage collector will still take up some time even though it won't find objects to delete.

6.3.6 Implementation Strategies

This common pattern is fairly easy to implement. To make the pattern easier to use in C++, it is common to rewrite new and delete operators to use the pool manager for the various pooledClass types. That way, the issue of dynamic versus pooled allocation can be hidden from the application programmer.

Code Segment 6-1: C++ Pooled Allocation Implementation Strategy

#include <list>
using namespace std;

class PoolEmpty {
}; // exception type to be thrown

// note: list is a container from the C++ STL
template <class Resource, int nElements>
class GenericPool {
            list<Resource* > freeList;
            GenericPool(void) {
            for (int j=0; j<nElements; j++) {
                        freeList.push_back(new Resource);
         Resource* allocate(void) {
                        Resource* R;
                        if (freeList.size() > 0) {
                                    R = freeList.begin();
                                    // get the first one.
                                    // remove it from the free list
                        return R
                                    // and pass it back to the client
                              } else {
                        throw new PoolEmpty;
         void release(Resource* R) {

class BusMessage {
            string s;
int main(void)
            GenericPool<BusMessage, 1000> busMessagePool;
            return 0;

Additionally, this pattern can be mixed with the Factory Pattern of[1] to create the correct subtypes, if desired.

Java has no parameterized types, but it does have collections (arrays) plus some methods for manipulating arrays (in java.util) that are modeled after the Standard Template Library of C++. There are many implementation solutions available. A very simple one was used in Code Segment 6-2. In this example, the LinkedList class from java.util was used to hold the created BusMessage objects. When a client allocates it, the object is removed from the list and passed back to the client. When the client wishes to return the object to the pool, it merely calls BusMessagePool.release(), and the object is reinserted into the pool.

Code Segment 6-2: Java Implementation Strategy for Pools

import java.util.*;

class BusMessage {
    private String s;

class PoolEmpty extends Exception {

public class BusMessagePool{
    private LinkedList freeList = new LinkedList();

    public BusMessagePool() {

        for (int j=0; j<1000; j++)

            freeList.addLast(new BusMessage());

// allocate() gives the client a reference to a
// BusMessage object and removes it from the free list
public BusMessage allocate() throws PoolEmpty {
    BusMessage B;
    if (freeList.size() > 0) {
            B = (BusMessage) freeList.getFirst();
                                                      // get the first one.
            freeList.removeFirst();     // remove it from the
                                                     // free list and pass
            return B;                          // it back to the
                                                    // client
            } else {
            throw new PoolEmpty();
    // release() returns the passed BusMessage object back
into the pool
    public void release(BusMessage Carcass) {

Whatever the underlying basis for the pools, there must be a separate Resource Pool Manager for each kind of pooledClass. In C++, this is simply a matter of binding a different class to the formal parameter list of the ResourcePool template. In Java, this can be done by creating different lists using the LinkedList containers.

6.3.7 Related Patterns

The Pooled Allocation Pattern is but one of many approaches to managing memory allocation. The Static Allocation Pattern can be used for systems that are simpler, and the Dynamic Allocation Pattern and its variants can be used for more complex needs. The Abstract Factory Pattern [1] can be used with this pattern to provide a means for Pooled Allocation for different environments.

6.3.8 Sample Model

Figure 6-4a shows the object model for a system running a class model derived from the pattern shown in Figure 6-3. Figure 6-4b shows a scenario of the objects as they run. The first message shows the creation of the TempDataPool object, which in turn creates the 1000 TempData objects that it will manage. The other part of the object model shows three clients of the TempDataPool.

  • TempSensor This is a thermometer that records the temperature every ½ second and in doing so, allocates a TempData object to store the information. This object reports the temperature (by passing a reference to the allocated TempData object), first to the TempView, a GUI view object, and then to TempHistory, which manages the history of Temperature over the last several seconds.

  • Figure 6-4Figure 6-4: Pooled Allocation Pattern Example

  • TempView This is a GUI object that displays the temperature to a user on a display. Once it has displayed the value, it releases the TempData object that was passed back to the pool

  • TempHistory This maintains a history of the last ten seconds of temperature data. Thus, for the first 20 samples, it does not delete the TempData objects passed to it, but subsequently, it releases the oldest TempData object it owns when it receives a new one.

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020