Home > Articles > Programming

  • Print
  • + Share This
This chapter is from the book

4.2 In-Process Quality Metrics

Because our goal is to understand the programming process and to learn to engineer quality into the process, in-process quality metrics play an important role. In-process quality metrics are less formally defined than end-product metrics, and their practices vary greatly among software developers. On the one hand, in-process quality metrics simply means tracking defect arrival during formal machine testing for some organizations. On the other hand, some software organizations with well-established software metrics programs cover various parameters in each phase of the development cycle. In this section we briefly discuss several metrics that are basic to sound in-process quality management. In later chapters on modeling we will examine some of them in greater detail and discuss others within the context of models.

4.2.1 Defect Density During Machine Testing

Defect rate during formal machine testing (testing after code is integrated into the system library) is usually positively correlated with the defect rate in the field. Higher defect rates found during testing is an indicator that the software has experienced higher error injection during its development process, unless the higher testing defect rate is due to an extraordinary testing effort—for example, additional testing or a new testing approach that was deemed more effective in detecting defects. The rationale for the positive correlation is simple: Software defect density never follows the uniform distribution. If a piece of code or a product has higher testing defects, it is a result of more effective testing or it is because of higher latent defects in the code. Myers (1979) discusses a counterintuitive principle that the more defects found during testing, the more defects will be found later. That principle is another expression of the positive correlation between defect rates during testing and in the field or between defect rates between phases of testing.

This simple metric of defects per KLOC or function point, therefore, is a good indicator of quality while the software is still being tested. It is especially useful to monitor subsequent releases of a product in the same development organization. Therefore, release-to-release comparisons are not contaminated by extraneous factors. The development team or the project manager can use the following scenarios to judge the release quality:

  • If the defect rate during testing is the same or lower than that of the previous release (or a similar product), then ask: Does the testing for the current release deteriorate?

    • If the answer is no, the quality perspective is positive.

    • If the answer is yes, you need to do extra testing (e.g., add test cases to increase coverage, blitz test, customer testing, stress testing, etc.).

  • If the defect rate during testing is substantially higher than that of the previous release (or a similar product), then ask: Did we plan for and actually improve testing effectiveness?

    • If the answer is no, the quality perspective is negative. Ironically, the only remedial approach that can be taken at this stage of the life cycle is to do more testing, which will yield even higher defect rates.

    • If the answer is yes, then the quality perspective is the same or positive.

4.2.2 Defect Arrival Pattern During Machine Testing

Overall defect density during testing is a summary indicator. The pattern of defect arrivals (or for that matter, times between failures) gives more information. Even with the same overall defect rate during testing, different patterns of defect arrivals indicate different quality levels in the field. Figure 4.2 shows two contrasting patterns for both the defect arrival rate and the cumulative defect rate. Data were plotted from 44 weeks before code-freeze until the week prior to code-freeze. The second pattern, represented by the charts on the right side, obviously indicates that testing started late, the test suite was not sufficient, and that the testing ended prematurely.

Figure 4-2FIGURE 4.2 Two Contrasting Defect Arrival Patterns During Testing

The objective is always to look for defect arrivals that stabilize at a very low level, or times between failures that are far apart, before ending the testing effort and releasing the software to the field. Such declining patterns of defect arrival during testing are indeed the basic assumption of many software reliability models. The time unit for observing the arrival pattern is usually weeks and occasionally months. For reliability models that require execution time data, the time interval is in units of CPU time.

When we talk about the defect arrival pattern during testing, there are actually three slightly different metrics, which should be looked at simultaneously:

  • The defect arrivals (defects reported) during the testing phase by time interval (e.g., week). These are the raw number of arrivals, not all of which are valid defects.

  • The pattern of valid defect arrivals—when problem determination is done on the reported problems. This is the true defect pattern.

  • The pattern of defect backlog overtime. This metric is needed because development organizations cannot investigate and fix all reported problems immediately. This metric is a workload statement as well as a quality statement. If the defect backlog is large at the end of the development cycle and a lot of fixes have yet to be integrated into the system, the stability of the system (hence its quality) will be affected. Retesting (regression test) is needed to ensure that targeted product quality levels are reached.

4.2.3 Phase-Based Defect Removal Pattern

The phase-based defect removal pattern is an extension of the test defect density metric. In addition to testing, it requires the tracking of defects at all phases of the development cycle, including the design reviews, code inspections, and formal verifications before testing. Because a large percentage of programming defects is related to design problems, conducting formal reviews or functional verifications to enhance the defect removal capability of the process at the front end reduces error injection. The pattern of phase-based defect removal reflects the overall defect removal ability of the development process.

With regard to the metrics for the design and coding phases, in addition to defect rates, many development organizations use metrics such as inspection coverage and inspection effort for in-process quality management. Some companies even set up "model values" and "control boundaries" for various in-process quality indicators. For example, Cusumano (1992) reports the specific model values and control boundaries for metrics such as review coverage rate, review manpower rate (review work hours/number of design work hours), defect rate, and so forth, which were used by NEC's Switching Systems Division.

Figure 4.3 shows the patterns of defect removal of two development projects: project A was front-end loaded and project B was heavily testing-dependent for removing defects. In the figure, the various phases of defect removal are high-level design review (I0), low-level design review (I1), code inspection (I2), unit test (UT), component test (CT), and system test (ST). As expected, the field quality of project A outperformed project B significantly.

Figure 4-3FIGURE 4.3 Defect Removal by Phase for Two Products

4.2.4 Defect Removal Effectiveness

Defect removal effectiveness (or efficiency, as used by some writers) can be defined as follows:

Because the total number of latent defects in the product at any given phase is not known, the denominator of the metric can only be approximated. It is usually estimated by:

Defects removed during the phase + defects found later

The metric can be calculated for the entire development process, for the front end (before code integration), and for each phase. It is called early defect removal and phase effectiveness when used for the front end and for specific phases, respectively. The higher the value of the metric, the more effective the development process and the fewer the defects escape to the next phase or to the field. This metric is a key concept of the defect removal model for software development. (In Chapter 6 we give this subject a detailed treatment.) Figure 4.4 shows the DRE by phase for a real software project. The weakest phases were unit test (UT), code inspections (I2), and component test (CT). Based on this metric, action plans to improve the effectiveness of these phases were established and deployed.

Figure 4-4FIGURE 4.4 Phase Effectiveness of a Software Project

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020