Home > Articles > Software Development & Management > Architecture and Design

This chapter is from the book

7.5 Priority Ceiling Pattern

The Priority Ceiling Pattern, or Priority Ceiling Protocol (PCP) as it is sometimes called, addresses both issues of bounding priority inversion (and hence bounding blocking time) and removal of deadlock. It is a relatively sophisticated approach, more complex than the previous methods. It is not as widely supported by commercial RTOSs, however, and so its implementation often requires writing extensions to the RTOS.

7.5.1 Abstract

The Priority Ceiling Pattern is used to ensure bounded priority inversion and task blocking times and also to ensure that deadlocks due to resource contention cannot occur. It has somewhat more overhead than the Highest Locker Pattern. It is used in highly reliable multitasking systems.

7.5.2 Problem

The unbounded priority inversion problem is discussed in the chapter introduction in some detail. The Priority Ceiling Pattern exists to limit the maximum amount of priority inversion to a single level and to completely prevent resource-based deadlock.

7.5.3 Pattern Structure

Figure 7-12 shows the Priority Ceiling Pattern structure. The primary structural difference between the Priority Ceiling Pattern and the Highest Locker Pattern is the addition of a System Priority Ceiling attribute for the Scheduler. Behaviorally, there are some differences as well. The algorithm for starting and ending a critical section is shown in Figure 7-13.

Figure 7-12Figure 7-12: Priority Ceiling Pattern

7.5.4 Collaboration Roles

  • Abstract Thread

    The Abstract Thread class is an abstract (noninstantiable) superclass for Concrete Thread. Abstract Thread associates with the Scheduler. Since Concrete Thread is a subclass, it has the same interface to the Scheduler as the Abstract Thread. This enforces interface compliance. The Abstract Thread is an «active» object, meaning that when it is created, it creates an OS thread in which to run. It contains (that is, it has composition relations with) more primitive application objects that execute in the thread of the composite «active» object.

  • Concrete Thread

    The Concrete Thread is an «active» object most typically constructed to contain passive "semantic" objects (via the composition relation) that do the real work of the system. The Concrete Thread object provides a straightforward means of attaching these semantic objects into the concurrency architecture. Concrete Thread is an instantiable subclass of Abstract Thread.

  • Mutex

    The Mutex is a mutual exclusion semaphore object that permits only a single caller through at a time. The operations of the Shared Resource invoke it whenever a relevant service is called, locking it prior to starting the service and unlocking it once the service is complete. Threads that attempt to invoke a service when the services are already locked become blocked until the Mutex is in its unlocked state. This is done by the Mutex semaphore signaling the Scheduler that a call attempt was made by the currently active thread, the Mutex ID (necessary to unblock the correct Thread later when the Mutex is released), and the entry point—the place at which to continue execution of the Thread. See Figure 7-13 for the algorithms that control locking, blocking, and releasing the Mutex.

    Figure 7-13Figure 7-13: Priority Ceiling Pattern Resource Algorithm

  • Scheduler

    This object orchestrates the execution of multiple threads based on their priority according to a simple rule: Always run the ready thread with the highest priority. When the «active» Thread object is created, it (or its creator) calls the createThread operation to create a thread for the «active» object. Whenever this thread is executed by the Scheduler, it calls the StartAddr address (except when the thread has been blocked or preempted—in which case it calls the EntryPoint address).

    In this pattern, the Scheduler has some special duties when the Mutex signals an attempt to access a locked resource. Specifically, under some conditions, it must block the requesting task (done by stopping that task and placing a reference to it in the Blocked Queue (not shown—for details of the Blocked Queue, see the Static Priority Pattern in Chapter 5), and it must elevate the priority of the highest-priority blocked Thread being blocked. This is easy to determine, since the Blocked Queue is a priority FIFO—the highest-priority blocked task is the first one in that queue. Similarly, when the Thread releases the resource, the Scheduler must lower its priority back to its nominal priority. The Scheduler maintains the value of the highest-priority ceiling of all currently locked resources in its attribute systemPriorityCeiling.

  • Shared Resource

    A resource is an object shared by one or more Threads. For the system to operate properly in all cases, all Shared Resources must either be reentrant (meaning that corruption from simultaneous access cannot occur), or they must be protected. In the case of a protected resource, when a Thread attempts to use the resource, the associated mutex semaphore is checked, and if locked, the calling task is placed into the Blocked Queue. The task is terminated with its reentry point noted in the TCB.

    The SharedResource has a constant attribute (note the «frozen» constraint in Figure 7-12), called priorityCeiling. This is set during design to just greater than the priority of the highest priority task that can ever access it. In some RTOSs, this means that the priority will be one more (when a larger number indicates a higher priority), and in some it will be one less (when a lower number indicates a higher priority). This ensures that when the resource is locked, no other task using that resource can preempt it.

  • Task Control Block

    The TCB contains the scheduling information for its corresponding Thread object. This includes the priority of the thread, the default start address and the current entry address if it was preempted or blocked prior to completion. The Scheduler maintains a TCB object for each existing Thread. Note that TCB typically also has a reference off to a call and parameter stack for its Thread, but that level of detail is not shown here. The TCB tracks both the current priority of the Thread (which may have been elevated due to resource access and blocking) and its nominal priority.

7.5.5 Consequences

This pattern effectively enforces the desirable property that a high-priority task can at most be blocked from execution by a single critical section of a lower-priority task owning a required resource.

It can happen in the Priority Ceiling Pattern that a running task may not be able to access a resource even though it is not currently locked. This will occur if that resource's priority ceiling is less than the current system resource ceiling.

Deadlock is prevented by this pattern because condition 4 (circular wait) is prevented. Any condition that could potentially lead to circular waiting is prohibited. This does mean that a task may be prevented from accessing a resource even though it is currently unlocked.

There is also a consequence of computational overhead associated with the Priority Ceiling Pattern. This pattern is the most sophisticated of the resource management patterns presented in this chapter and has the highest computational overhead.

7.5.6 Implementation Strategies

Rather few RTOSs support the Priority Ceiling Pattern, but it can be added if the RTOS permits extension, particularly when a mutex is locked or released. If not, you can create your own Mutex and System Resource Ceiling classes that intervene with the priority management prior to handing off control to the internal RTOS scheduler. If you are writing your own scheduler, then the implementation should be a relatively straightforward extension of the Highest Locker Pattern.

7.5.7 Related Patterns

Because this pattern is the most sophisticated, it also has the most computational overhead. Therefore, under some circumstances, it may be desirable to use a less computational, if less capable, approach, such as the Highest Locker Pattern, the Priority Inheritance Pattern, or even the Critical Section Pattern.

7.5.8 Sample Model

A robotic control system is given as an example in Figure 7-14a. There are three tasks. The lowest-priority task, Command Processor, inserts commands into a shared resource, the Command Queue. The middle-priority task, Safety Monitor, performs periodic safety monitoring, accessing the shared resource Robot Arm. The highest-priority task, Robotic Planner, accepts commands (and hence must access the Command Queue) and also moves the arm (and therefore must access Robot Arm). Note that the resource ceiling of both resources must be the priority of the highest-priority task in this case because it accesses both of these resources.

Figure 7-14Figure 7-14: Priority Ceiling Pattern

Figure 7-14b shows a scenario for the example. At point A, the Command Processor runs, putting set of commands into the Command Queue. The call to the Command Processor locks the resource successfully because at this point, there are no locked resources. While this is happening, the Safety Monitor starts to run at point B. This preempts the Command Processor because it is a higher priority, so Command Processor goes into a waiting state because it's ready to run but cannot because a higher-priority task is running. Now the Safety Monitor attempts to access the second resource, Robot Arm. Because a resource is currently already locked with same priority ceiling (found by the Scheduler examining its systemPriorityCeiling attribute), that call is blocked. Note that the Safety Monitor is prevented from running even though it is trying to access a resource that is not currently locked but could start a circular waiting condition, potentially leading to deadlock. Thus, the access is prevented.

When the resource access to Safety Monitor is prevented, the priority of the Command Processor is elevated to Medium, the same level as the highest-blocked task. At point C, Robot Planner runs, preempting the Command Processor task. The Robot Planner invokes Command Queue.Get() to retrieve any waiting commands but finds that this resource is locked. Therefore, its access is blocked, and it is put on the blocked queue, and the Command Processor task resumes but at priority High.

When the call to Command Queue.put() finally completes, the priority of the Command Processor task is deescalated back to its nominal priority—Low (point D). At this point in time, there are two tasks of higher priority waiting to run. The higher priority of them, Robot Planning runs at its normal High priority. It accesses first the Command Queue resource and then the Robot Arm resource. When it completes, the next highest task ready to run is Safety Monitor. It runs, accessing the Robot Arm resource. When it completes, the lowest-priority task, Command Processor is allowed to complete its work and return control to the OS.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020