Home > Articles > Security > General Security and Privacy

Security Through Penetration Testing: Internet Penetration

📄 Contents

  1. 1 Network Enumeration/Discovery
  2. 2 Vulnerability Analysis
  3. 3 Exploitation
The overall methodology for penetration testing can be broken into a three-step process: network enumeration, vulnerability analysis, and exploitation. That means discovering as much as possible about the target, identifying all potential avenues of attack, and attempting to compromise the network by leveraging the results of the vulnerability analysis and following as many avenues identified as time allows. Throughout the discussion of this process, there are references to the tools found most useful for accomplishing these tasks.
This chapter is from the book

This chapter begins our discussion of the general process for performing penetration testing that we have developed during our experience. While the procedures discussed are not set in stone and we never cease to examine and refine our own techniques, we would like to stress that the approach laid out is both an efficient means of compromising a network and an effective means of evaluating the security posture of that network.

That is not to say it is the only means of examining the security posture of a network. Other security professionals have different and valid testing techniques. This process is one that has proven to be effective.

Having a defined, organized methodology provides for an efficient penetration test with a consistent level of detail. Professional consultants hired to perform penetration testing attempt to compromise the target network during a given time period, often a matter of weeks or even days. This is substantially different than hackers who can spend as much time as they want in attempting to gain root access to a network. Therefore, we need a well-defined methodology that allows us to systematically check for known vulnerabilities and pursue potential security holes in the time allotted. In addition, following a single methodology helps ensure a consistent level of reliability in results across multiple engagements.

The overall methodology for penetration testing can be broken into a three-step process.

  1. Network enumeration: Discover as much as possible about the target.

  2. Vulnerability analysis: Identify all potential avenues of attack.

  3. Exploitation: Attempt to compromise the network by leveraging the results of the vulnerability analysis and following as many avenues identified as time allows.

Throughout our discussion of this process, we reference the tools we have found most useful for accomplishing these tasks.

5.1 Network Enumeration/Discovery

Before we can gain unauthorized access to a network, we have to know the topology of the network. Every piece of information we can obtain about the target network adds a piece to the puzzle. We specifically scan the target network to obtain a list of live hosts, as well as to begin mapping the target to get a sense of its architecture and the kind of traffic (for example, TCP, UDP, IPX) that is allowed. The goal of discovery is to start with no information and gather as much data as possible about the target network and systems. We then use this information to identify potential exploits.

The process of discovering this information is called network enumeration and is the first step to an external penetration test. This step is performed largely over the Internet using readily available software and publicly accessible repositories of information. Most of the information we obtain in this step is freely available and legal to obtain. However, many companies monitor who tries to get this information since it may indicate a prelude to an attack.

5.1.1 Whois Query

Even before we begin the network scanning, we must determine the domain names and IP address ranges that belong to the target organization. To simulate the scenario of an external hacker, no prior information about the target organization should be provided to the consultant to best determine the amount of information a hacker could obtain. However, before moving to the second step of the process, all identified domain names and IP addresses should be verified with the target organization to ensure they are owned by the organization and are part of the scope of the exercise.

To determine the IP address ranges associated with the client, we perform an Internet whois query. The command can be run natively on most UNIX environments (check man whois for usage and version-specific syntax). For the Windows environment, Ws PingPro Pack and Sam Spade are two tools that can be used to perform whois queries. (These tools are discussed in Chapter 12.)

Whois queries can also be made over the Web from http://www.arin.net and http://www.networksolutions.com. Figure 5–1 shows the whois query from the Network Solutions site (without the domain servers) for the domain klevinsky.com.

Figure 5–1 Whois query for klevinsky.com

A whois query provides the administrative contact, billing contact, and address of the target network. The administrative and billing contact information can be useful for performing social engineering attacks on the employees of the target network (see Chapter 8).

The whois query provides IP address ranges that are associated with the name you enter. Some ranges may be returned that belong to a separate organization with a similar name. For example, the partial results of a whois query on company reveal registered IP addresses for a collection of firms whose names include the word company but may not be the target organization.

Of the multiple IP ranges that do belong to the client, a portion may belong to different divisions of the client's organization and lie outside the scope of the engagement. The targets for the engagement should be verified when this information is found.

Whois queries return only the first 50 items that match the query. This is implemented by Internic to limit the search time. As the listings of Internet domains grow, the task of searching all listings and returning all possible matches becomes more computationally intensive.

If the target company has more than 50 listings that interest you, you may have to engage in some creative searching. One idea is to break up the names of the company or search for plurals or modified company names. Find the names of subsidiary organizations (press releases on the target company's Web site are a good place to look) and search for those names as well.

5.1.2 Zone Transfer

A whois query also returns the list of domain name servers that provide the target network's host name and IP address mapping. (This information, along with the contact information, is found by clicking on the Net Block name associated with the listing.) To obtain the network IP listing, we want to attempt a zone transfer against each system identified as a DNS server. A zone transfer requests the complete list of matched IP addresses and host names stored within a DNS for a specified domain.

A zone transfer can be performed with the nslookup command that is supported by both the UNIX and Windows platforms. Sam Spade, Ws PingPro Pack, and NetScan Tools on the Windows operating system all provide a graphical user interface (GUI) for performing a zone transfer. In order to perform a zone transfer, we have to use a DNS server that is authoritative for the domain of interest; therefore, we use the domain name servers identified through the whois query. Techniques for performing zone transfers are covered in Chapter 12.

The zone transfer returns a listing of IP addresses and their corresponding host names. A typical listing may look something like this:

ls -d abc.com
 abc.com.           SOA        server.abc.com
admin.abc.com.  (200000068 300 800 359100 4700)
 abc.com.           A
 abc.com.           NS         server.abc.com
 abc.com.           MX         10 mail.abc.com
 business           A
 application        A
 mailsweeper        A
 mimesweeper        CNAME      server4.abc.com
 server4            A
 abc.com.           SOA        server.abc.com
admin.abc.com.  (200000068 300 800 359100 4700)

Machine host names often indicate the function of the machine. For instance, the corporate firewall machine is often called "firewall" or the name of the firewall running, such as "Gauntlet" or "Firewall1." Similarly, we have seen some equally revealing machine names, such as "mail.companyname.com," "smtp.companyname.com," "ftp.companyname.com," "dns01.companyname.com," "ns01.companyname.com," and "web03.companyname.com." These names not only offer strong evidence of their main function but also indicate the presence of other machines. For example, if there is a web03 machine on a particular network, there stands to reason that a web01 and a web02 may also exist. If there is an ns01 machine, there may also be ns and ns02 machines. In light of this, names of sports teams, famous people, and cartoon characters have been used as good machine names. They are easy to remember, and they do not give away any technical information.

When doing a zone transfer, keep in mind that often the DNS server does not have a complete listing for all the target network's hosts. Several machines may be using DHCP, and the company may use separate domain name servers for separate domains. Also, its DNS may not support zone transfer requests from unauthorized hosts, allowing them only from the backup name servers within the organization. Therefore, you should attempt zone transfers against all the target network's identified domain name servers. One may offer at least a partial listing.

We have also seen companies outsource the domain name function or use their ISP's DNS server. In our experience, performing a zone transfer against a DNS server or any machine belonging to an ISP or a third party is generally not received well by those third parties. In that case, we usually omit this step unless we have the written consent of both the target organization and the third party. In these situations, make sure the terms of the penetration test clearly state whether or not the hosted systems are within the scope of the engagement.

On the other hand, DNS machines that belong to the client organization but are not a part of the IP address range are specifically within scope and are valid targets of a zone transfer as long as there is a reasonable chance that that DNS will offer information regarding the within-scope target domain. This is because an Internet-based penetration relies on using information that lies in the public domain or is publicly accessible.

This usually occurs when the target comprises one or more domains within a large organization. The main DNS server for the organization will likely have a partial listing of the hosts in the target domain even if it lies outside that domain.

Unlike the whois query, a zone transfer is fairly indicative of hacker activity since there really is no need for the general user to have this information. Therefore, someone making this query against a DNS server is probably a potential attacker. For that reason, we suggest exercising good judgment before performing these queries. Zone transfers may indicate to the network staff the beginning of a penetration test against the network.

5.1.3 Ping Sweeps

Our next step is to ping the discovered IP addresses to see if they are "up" or "live." There are a variety of ways to ping a set of IP addresses. The most commonly used is the traditional ICMP ping (with echo requests or echo replies messages), but gaining popularity is a TCP ping (with a full or half TCP handshake). Many sites have taken the security step of restricting ICMP traffic or blocking it at the border firewall and router, limiting their exposure to the traditional ping. However, a TCP ping may still be allowed on the network.

Over time, organizations have become more adept at blocking a ping sweep, and countermeasures are becoming more prevalent. While you can assume with some amount of confidence that a host that sends an ICMP response to an ICMP echo request is active, it is not always true that a host that fails to send such a response is necessarily down. The host may be down, or ICMP traffic to that host may be filtered and the ping request simply did not reach it. False responses can also be sent to ICMP echo requests by perimeter security devices.

Depending on the level of stealth you are seeking in your pinging activity, there are a variety of steps you can take to remain beneath the radar of an intrusion detection system that may be monitoring network traffic. While these steps are discussed in greater detail in the section on Nmap in Chapter 12, it is worth mentioning that randomizing the order of the IP addresses being pinged helps avoid detection, as do varying the time between sending ping packets and dividing the IP addresses into multiple groups (this is most helpful for large numbers of hosts, that is, over 100).

The ping utility exists natively on most operating systems and can be performed from a large collection of tools. One of the most popular is Nmap because of its configuration, its ease of use, and the other features it includes (TCP ping, port scanning, OS identification). For the Windows environments, Pinger and Ws PingPro Pack are both effective tools for performing ping sweeps. (In addition, a Windows-compatible version on Nmap is currently under development.) Pinger strictly pings a set of IP addresses while Ws PingPro Pack provides additional functionality through a suite of tools.

Ping sweeps are generally not considered to be evidence of harmful intent to hack a system. However, they can be irritating or destructive if they become excessive; for example, ping each box on a Class C network every 30 seconds for 8 hours and see how that affects bandwidth.

5.1.4 Traceroute

In order to come up with a rough map of the client architecture, we trace the route to several of the live hosts. This is a tedious process, but it does help identify the routers, firewalls, load-balancing devices, and other border machines in place on the target network. In addition, it helps identify hosts that are on separate segments. Hosts on separate segments may be managed by different individuals and may have trust relationships that can be exploited to compromise the system.

A traceroute marks the path of ICMP packets from the local host (where the command is executed) to the destination host. It is available as a command line tool on both the UNIX (traceroute) and Windows (tracert) operating systems. In addition, the Windows-based tool VisualRoute performs this service as well as mapping the path over a map of the world. (VisualRoute is discussed in Chapter 12.)

We perform traceroutes on several IP addresses within the same Class C address block to see if the ICMP packets follow the same path. We are interested in seeing the hops just prior to the target. These hops may represent routers, firewalls, or other gateways. If several hosts have the same prior hop, it is probably a router or firewall. If there is a common host after which ICMP packets can no longer be seen, that too may be the firewall or filtering router. Also, a common host in front of a bank of Web servers may be a load-balancing device or a Web redirector.

If you notice that packets to some hosts on the network segment follow an alternate path, you may have discovered new gateways into the target network. It is not uncommon for network segments to have multiple connections to the Internet—unbeknownst to network managers. These can be developed on the fly for particular network tests or applications and simply forgotten. Such paths often lead to network compromises.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020