# Communications Satellites

1. Geostationary Satellites
2. Applications
If trying to understanding satellite communications makes your head swim, tune in to this streamlined overview by Bill Stallings.
From the author of

## Geostationary Satellites

Satellites can be characterized by the orbits they keep. The most common type today is the geostationary satellite (GEOS), as shown in Figure 1.

Figure 1 Satellite orbits (not to scale).

If the satellite is in a circular orbit 35,838 km above the earth's surface and rotates in the equatorial plane of the earth, it will rotate at the same angular speed as the earth and will remain above the same spot on the equator as the earth rotates. This configuration has many advantages to recommend it:

• Because the satellite is stationary relative to the earth, there is no problem with frequency changes due to the relative motion of the satellite and antennas on earth (Doppler effect).

• Tracking of the satellite by its earth stations is simplified.

• At 35,838 km above the earth, the satellite can communicate with roughly one-fourth of the earth; three satellites in geostationary orbit separated by 120x cover most of the inhabited portions of the entire earth, excluding only the areas near the north and south poles.

On the other hand, there are problems:

• The signal can get quite weak after traveling over 35,000 km.

• The polar regions and the far northern and southern hemispheres are poorly served by geostationary satellites.

• Even at the speed of light, about 300,000 km/sec, the delay in sending a signal from a point on the equator beneath the satellite 35,838 km to the satellite and 35,838 km back is substantial.

The delay of communication between two locations on earth directly under the satellite is in fact (2 x 35,838)/300,000 = 0.24 sec. For other locations not directly under the satellite, the delay is even longer. If the satellite link is used for telephone communication, the added delay between when one person speaks and the other responds is increased twofold, to almost 0.5 sec. This is definitely noticeable.

Another feature of geostationary satellites is that they use their assigned frequencies over a very large area. For point-to-multipoint applications such as broadcasting TV programs, this can be desirable, but for point-to-point communications it's very wasteful of spectrum. Special spot and steered-beam antennas, which restrict the area covered by the satellite's signal, can be used to control the "footprint" or signaling area. To solve some of these problems, orbits other than geostationary have been designed for satellites. Low-earth-orbiting satellites (LEOS) and medium-earth-orbiting satellites (MEOS) are important for third-generation personal communications.

### Low- and Medium-Earth-Orbiting Satellites

The original AT&T satellite proposal was for low-earth-orbiting satellites, but most of the early commercial satellites were geostationary. Nevertheless, low-earth orbits have advantages, and many recent satellite proposals are based on them. The idea is to use constellations of inexpensive low-earth-orbiting satellites, sometimes called lightsats. They orbit at altitudes of about 320 to 1,100 km above the earth's surface. Therefore, the propagation time is much smaller. Moreover, their signal is much stronger than that of geostationary satellites for the same transmission power. Their coverage can be better localized so that spectrum can be better conserved. For this reason, this technology is currently being proposed for communicating with mobile terminals and with personal terminals that need stronger signals to function. On the other hand, to provide broad coverage over 24 hours, many satellites are needed. Sixty-six are being proposed by Motorola for its Iridium system.

A number of commercial proposals have been made to use clusters of LEOs to provide communications services. These proposals can be divided into two categories:

• Little LEOSs: Intended to work at communication frequencies below 1 GHz, using no more than 5 MHz of bandwidth, and supporting data rates up to 10 Kbps. These systems are aimed at paging, tracking, and low-rate messaging. Orbcom is an example of such a satellite system. It was the first (little) LEO in operation, with its first two satellites launched in April of 1995. These are some of its stats:

• Designed for paging and burst communication and optimized for handling small bursts of data from 6 to 250 bytes in length.

• Used by businesses to track trailers, railcars, heavy equipment, and other remote and mobile assets. It can also be used to monitor remote utility meters and oil and gas storage tanks, wells, and pipelines, or to stay in touch with remote workers anywhere in the world.

• Uses the frequencies 148.00 to 150.05 MHz to the satellites, and 137.00 to 138.00 from the satellites, with well over 30 satellites in low-earth orbit. Supports subscriber data rates of 2.4 Kbps to the satellite and 4.8 Kbps down.

• Big LEOSs: Frequencies above 1 GHz and supporting data rates up to a few megabits per second. These systems tend to offer the same services as those of small LEOSs, with the addition of voice and positioning services. Globalstar is one example of a Big LEO system. These are some of its stats:

• Its satellites are fairly rudimentary. Unlike Iridium, it has no onboard processing or communications between satellites. Most processing is done by the system's earth stations.

• Uses CDMA as in the CDMA cellular standard.

• Uses the S-Band (about 2 GHz) for the down link to mobile users.

• Tightly integrated with traditional voice carriers. All calls must be processed through earth stations.

• Satellite constellation consists of 48 operating satellites and 8 spares, in 1,413 km orbits.

A LEO satellite can be "seen" by a point on earth on the order of minutes before the satellite passes out of sight. If intermediate orbits are used—higher than the LEOS and lower than GEOS—a point on earth can see the satellite for periods on the order of hours. Such orbits are called medium-earth-orbiting satellites (MEOS). These orbits are on the order of 10,000 km above the earth, and require fewer handoffs. While propagation delay to earth from such satellites (and the power required) is greater than for LEOS, they are still substantially less than for GEOS. ICO Global Communications, established in January 1995, proposed a MEO system. Launches began in 2000; 12 satellites, including two spares, are planned in 10,400 km orbits. The satellites will be divided equally between two planes tilted 45x to equator. Proposed applications are digital voice, data, facsimile, high-penetration notification, and messaging services.

### InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

## Overview

Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

## Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

### Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

### Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

### Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

### Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

### Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

### Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

## Other Collection and Use of Information

### Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

### Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

### Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

### Do Not Track

This site currently does not respond to Do Not Track signals.

## Security

Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

## Children

This site is not directed to children under the age of 13.

## Marketing

Pearson may send or direct marketing communications to users, provided that

• Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
• Such marketing is consistent with applicable law and Pearson's legal obligations.
• Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
• Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

## Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

## Choice/Opt-out

Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

## Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

## Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

## Sharing and Disclosure

Pearson may disclose personal information, as follows:

• As required by law.
• With the consent of the individual (or their parent, if the individual is a minor)
• In response to a subpoena, court order or legal process, to the extent permitted or required by law
• To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
• In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
• To investigate or address actual or suspected fraud or other illegal activities
• To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
• To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
• To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.