Home > Articles > Programming > Python

Effective Python Item 40: Consider Coroutines to Run Many Functions Concurrently

  • Print
  • + Share This
There are numerous problems with threads in Python, but Python can work around almost all of these issues with coroutines, which let you have many seemingly simultaneous functions in your Python programs. Brett Slatkin discusses coroutines in this excerpt from Effective Python: 59 Specific Ways to Write Better Python.
Like this article? We recommend

Threads give Python programmers a way to run multiple functions seemingly at the same time (see Item 37: “Use Threads for Blocking I/O, Avoid for Parallelism”). But there are three big problems with threads:

  • They require special tools to coordinate with each other safely (see Item 38: “Use Lock to Prevent Data Races in Threads” and Item 39: “Use Queue to Coordinate Work Between Threads”). This makes code that uses threads harder to reason about than procedural, single-threaded code. This complexity makes threaded code more difficult to extend and maintain over time.
  • Threads require a lot of memory, about 8 MB per executing thread. On many computers, that amount of memory doesn’t matter for a dozen threads or so. But what if you want your program to run tens of thousands of functions “simultaneously”? These functions may correspond to user requests to a server, pixels on a screen, particles in a simulation, etc. Running a thread per unique activity just won’t work.
  • Threads are costly to start. If you want to constantly be creating new concurrent functions and finishing them, the overhead of using threads becomes large and slows everything down.

Python can work around all these issues with coroutines. Coroutines let you have many seemingly simultaneous functions in your Python programs. They’re implemented as an extension to generators. The cost of starting a generator coroutine is a function call. Once active, they each use less than 1 KB of memory until they’re exhausted.

Coroutines work by enabling the code consuming a generator to send a value back into the generator function after each yield expression. The generator function receives the value passed to the send function as the result of the corresponding yield expression.

def my_coroutine():
    while True:
        received = yield
        print('Received:', received)

it = my_coroutine()
next(it)             # Prime the coroutine
it.send('First')
it.send('Second')

>>>
Received: First
Received: Second

The initial call to next is required to prepare the generator for receiving the first send by advancing it to the first yield expression. Together, yield and send provide generators with a standard way to vary their next yielded value in response to external input.

For example, say you want to implement a generator coroutine that yields the minimum value it’s been sent so far. Here, the bare yield prepares the coroutine with the initial minimum value sent in from the outside. Then the generator repeatedly yields the new minimum in exchange for the next value to consider.

def minimize():
    current = yield
    while True:
        value = yield current
        current = min(value, current)

The code consuming the generator can run one step at a time and will output the minimum value seen after each input.

it = minimize()
next(it)            # Prime the generator
print(it.send(10))
print(it.send(4))
print(it.send(22))
print(it.send(-1))

>>>
10
4
4
-1

The generator function will seemingly run forever, making forward progress with each new call to send. Like threads, coroutines are independent functions that can consume inputs from their environment and produce resulting outputs. The difference is that coroutines pause at each yield expression in the generator function and resume after each call to send from the outside. This is the magical mechanism of coroutines.

This behavior allows the code consuming the generator to take action after each yield expression in the coroutine. The consuming code can use the generator’s output values to call other functions and update data structures. Most importantly, it can advance other generator functions until their next yield expressions. By advancing many separate generators in lockstep, they will all seem to be running simultaneously, mimicking the concurrent behavior of Python threads.

The Game of Life

Let me demonstrate the simultaneous behavior of coroutines with an example. Say you want to use coroutines to implement Conway’s Game of Life. The rules of the game are simple. You have a two-dimensional grid of an arbitrary size. Each cell in the grid can either be alive or empty.

ALIVE = '*'
EMPTY = '-'

The game progresses one tick of the clock at a time. At each tick, each cell counts how many of its neighboring eight cells are still alive. Based on its neighbor count, each cell decides if it will keep living, die, or regenerate. Here’s an example of a 5×5 Game of Life grid after four generations with time going to the right. I’ll explain the specific rules further below.

  0   |   1   |   2   |   3   |   4
----- | ----- | ----- | ----- | -----
-*--- | --*-- | --**- | --*-- | -----
--**- | --**- | -*--- | -*--- | -**--
---*- | --**- | --**- | --*-- | -----
----- | ----- | ----- | ----- | -----

I can model this game by representing each cell as a generator coroutine running in lockstep with all the others.

To implement this, first I need a way to retrieve the status of neighboring cells. I can do this with a coroutine named count_neighbors that works by yielding Query objects. The Query class I define myself. Its purpose is to provide the generator coroutine with a way to ask its surrounding environment for information.

Query = namedtuple('Query', ('y', 'x'))

The coroutine yields a Query for each neighbor. The result of each yield expression will be the value ALIVE or EMPTY. That’s the interface contract I’ve defined between the coroutine and its consuming code. The count_neighbors generator sees the neighbors’ states and returns the count of living neighbors.

def count_neighbors(y, x):
    n_ = yield Query(y + 1, x + 0)  # North
    ne = yield Query(y + 1, x + 1)  # Northeast
    # Define e_, se, s_, sw, w_, nw ...
    # ...
    neighbor_states = [n_, ne, e_, se, s_, sw, w_, nw]
    count = 0
    for state in neighbor_states:
        if state == ALIVE:
            count += 1
    return count

I can drive the count_neighbors coroutine with fake data to test it. Here, I show how Query objects will be yielded for each neighbor. count_neighbors expects to receive cell states corresponding to each Query through the coroutine’s send method. The final count is returned in the StopIteration exception that is raised when the generator is exhausted by the return statement.

it = count_neighbors(10, 5)
q1 = next(it)                  # Get the first query
print('First yield: ', q1)
q2 = it.send(ALIVE)            # Send q1 state, get q2
print('Second yield:', q2)
q3 = it.send(ALIVE)            # Send q2 state, get q3
# ...
try:
    count = it.send(EMPTY)     # Send q8 state, retrieve count
except StopIteration as e:
    print('Count: ', e.value)  # Value from return statement
>>>
First yield:  Query(y=11, x=5)
Second yield: Query(y=11, x=6)
...
Count:  2

Now I need the ability to indicate that a cell will transition to a new state in response to the neighbor count that it found from count_neighbors. To do this, I define another coroutine called step_cell. This generator will indicate transitions in a cell’s state by yielding Transition objects. This is another class that I define, just like the Query class.

Transition = namedtuple('Transition', ('y', 'x', 'state'))

The step_cell coroutine receives its coordinates in the grid as arguments. It yields a Query to get the initial state of those coordinates. It runs count_neighbors to inspect the cells around it. It runs the game logic to determine what state the cell should have for the next clock tick. Finally, it yields a Transition object to tell the environment the cell’s next state.

def game_logic(state, neighbors):
    # ...

def step_cell(y, x):
    state = yield Query(y, x)
    neighbors = yield from count_neighbors(y, x)
    next_state = game_logic(state, neighbors)
    yield Transition(y, x, next_state)

Importantly, the call to count_neighbors uses the yield from expression. This expression allows Python to compose generator coroutines together, making it easy to reuse smaller pieces of functionality and build complex coroutines from simpler ones. When count_neighbors is exhausted, the final value it returns (with the return statement) will be passed to step_cell as the result of the yield from expression.

Now, I can finally define the simple game logic for Conway’s Game of Life. There are only three rules.

def game_logic(state, neighbors):
    if state == ALIVE:
        if neighbors < 2:
            return EMPTY     # Die: Too few
        elif neighbors > 3:
            return EMPTY     # Die: Too many
    else:
        if neighbors == 3:
            return ALIVE     # Regenerate
    return state

I can drive the step_cell coroutine with fake data to test it.

it = step_cell(10, 5)
q0 = next(it)           # Initial location query
print('Me:      ', q0)
q1 = it.send(ALIVE)     # Send my status, get neighbor query
print('Q1:      ', q1)
# ...
t1 = it.send(EMPTY)     # Send for q8, get game decision
print('Outcome: ', t1)

>>>
Me:       Query(y=10, x=5)
Q1:       Query(y=11, x=5)
...
Outcome:  Transition(y=10, x=5, state='-')

The goal of the game is to run this logic for a whole grid of cells in lockstep. To do this, I can further compose the step_cell coroutine into a simulate coroutine. This coroutine progresses the grid of cells forward by yielding from step_cell many times. After progressing every coordinate, it yields a TICK object to indicate that the current generation of cells have all transitioned.

TICK = object()

def simulate(height, width):
    while True:
        for y in range(height):
            for x in range(width):
                yield from step_cell(y, x)
        yield TICK

What’s impressive about simulate is that it’s completely disconnected from the surrounding environment. I still haven’t defined how the grid is represented in Python objects, how Query, Transition, and TICK values are handled on the outside, nor how the game gets its initial state. But the logic is clear. Each cell will transition by running step_cell. Then the game clock will tick. This will continue forever, as long as the simulate coroutine is advanced.

This is the beauty of coroutines. They help you focus on the logic of what you’re trying to accomplish. They decouple your code’s instructions for the environment from the implementation that carries out your wishes. This enables you to run coroutines seemingly in parallel. This also allows you to improve the implementation of following those instructions over time without changing the coroutines.

Now, I want to run simulate in a real environment. To do that, I need to represent the state of each cell in the grid. Here, I define a class to contain the grid:

class Grid(object):
    def __init__(self, height, width):
        self.height = height
        self.width = width
        self.rows = []
        for _ in range(self.height):
            self.rows.append([EMPTY] * self.width)

    def __str__(self):
        # ...

The grid allows you to get and set the value of any coordinate. Coordinates that are out of bounds will wrap around, making the grid act like infinite looping space.

    def query(self, y, x):
        return self.rows[y % self.height][x % self.width]

    def assign(self, y, x, state):
        self.rows[y % self.height][x % self.width] = state

At last, I can define the function that interprets the values yielded from simulate and all of its interior coroutines. This function turns the instructions from the coroutines into interactions with the surrounding environment. It progresses the whole grid of cells forward a single step and then returns a new grid containing the next state.

def live_a_generation(grid, sim):
    progeny = Grid(grid.height, grid.width)
    item = next(sim)
    while item is not TICK:
        if isinstance(item, Query):
            state = grid.query(item.y, item.x)
            item = sim.send(state)
        else:  # Must be a Transition
            progeny.assign(item.y, item.x, item.state)
            item = next(sim)
    return progeny

To see this function in action, I need to create a grid and set its initial state. Here, I make a classic shape called a glider.

grid = Grid(5, 9)
grid.assign(0, 3, ALIVE)
# ...
print(grid)

>>>
---*-----
----*----
--***----
---------
---------

Now I can progress this grid forward one generation at a time. You can see how the glider moves down and to the right on the grid based on the simple rules from the game_logic function.

class ColumnPrinter(object):
    # ...

columns = ColumnPrinter()
sim = simulate(grid.height, grid.width)
for i in range(5):
    columns.append(str(grid))
    grid = live_a_generation(grid, sim)

print(columns)

>>>
    0     |     1     |     2     |     3     |     4
---*----- | --------- | --------- | --------- | ---------
----*---- | --*-*---- | ----*---- | ---*----- | ----*----
--***---- | ---**---- | --*-*---- | ----**--- | -----*---
--------- | ---*----- | ---**---- | ---**---- | ---***---
--------- | --------- | --------- | --------- | ---------

The best part about this approach is that I can change the game_logic function without having to update the code that surrounds it. I can change the rules or add larger spheres of influence with the existing mechanics of Query, Transition, and TICK. This demonstrates how coroutines enable the separation of concerns, which is an important design principle.

Coroutines in Python 2

Unfortunately, Python 2 is missing some of the syntactical sugar that makes coroutines so elegant in Python 3. There are two limitations. First, there is no yield from expression. That means that when you want to compose generator coroutines in Python 2, you need to include an additional loop at the delegation point.

# Python 2
def delegated():
    yield 1
    yield 2

def composed():
    yield 'A'
    for value in delegated():  # yield from in Python 3
        yield value
    yield 'B'

print list(composed())

>>>
['A', 1, 2, 'B']

The second limitation is that there is no support for the return statement in Python 2 generators. To get the same behavior that interacts correctly with try/except/finally blocks, you need to define your own exception type and raise it when you want to return a value.

# Python 2
class MyReturn(Exception):
    def __init__(self, value):
        self.value = value

def delegated():
    yield 1
    raise MyReturn(2)  # return 2 in Python 3
    yield 'Not reached'

def composed():
    try:
        for value in delegated():
            yield value
    except MyReturn as e:
        output = e.value
    yield output * 4

print list(composed())

>>>
[1, 8]

Things to Remember

  • Coroutines provide an efficient way to run tens of thousands of functions seemingly at the same time.
  • Within a generator, the value of the yield expression will be whatever value was passed to the generator’s send method from the exterior code.
  • Coroutines give you a powerful tool for separating the core logic of your program from its interaction with the surrounding environment.
  • Python 2 doesn’t support yield from or returning values from generators.
  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020