Home > Articles > Programming > Java

Java Language Basics

  • Print
  • + Share This
This chapter is from the book

Control Flow Statements

The statements inside your source files are generally executed from top to bottom, in the order that they appear. Control flow statements, however, break up the flow of execution by employing decision making, looping, and branching, enabling your program to conditionally execute particular blocks of code. This section describes the decision-making statements (if-then, if-then-else, switch), the looping statements (for, while, do-while), and the branching statements (break, continue, return) supported by the Java programming language.

The if-then and if-then-else Statements

The if-then Statement

The if-then statement is the most basic of all the control flow statements. It tells your program to execute a certain section of code only if a particular test evaluates to true. For example, the Bicycle class could allow the brakes to decrease the bicycle’s speed only if the bicycle is already in motion. One possible implementation of the applyBrakes method could be as follows:

void applyBrakes() {
    // the "if" clause: bicycle must be moving
    if (isMoving){
        // the "then" clause: decrease current speed
        currentSpeed--;
    }
}

If this test evaluates to false (meaning that the bicycle is not in motion), control jumps to the end of the if-then statement.

In addition, the opening and closing braces are optional, provided that the “then” clause contains only one statement:

void applyBrakes() {
    // same as above, but without braces
    if (isMoving)
        currentSpeed--;
}

Deciding when to omit the braces is a matter of personal taste. Omitting them can make the code more brittle. If a second statement is later added to the “then” clause, a common mistake would be forgetting to add the newly required braces. The compiler cannot catch this sort of error; you’ll just get the wrong results.

The if-then-else Statement

The if-then-else statement provides a secondary path of execution when an “if” clause evaluates to false. You could use an if-then-else statement in the applyBrakes method to take some action if the brakes are applied when the bicycle is not in motion. In this case, the action is to simply print an error message stating that the bicycle has already stopped.

void applyBrakes() {
    if (isMoving) {
        currentSpeed--;
    } else {
        System.err.println("The bicycle has already stopped!");
    }
}

The following program, IfElseDemo, assigns a grade based on the value of a test score: an A for a score of 90% or above, a B for a score of 80% or above, and so on:

class IfElseDemo {
    public static void main(String[] args) {

        int testscore = 76;
        char grade;

        if (testscore >= 90) {
            grade = 'A';
        } else if (testscore >= 80) {
            grade = 'B';
        } else if (testscore >= 70) {
            grade = 'C';
        } else if (testscore >= 60) {
            grade = 'D';
        } else {
            grade = 'F';
        }
        System.out.println("Grade = " + grade);
    }
}

The output from the program is as follows:

    Grade = C

You may have noticed that the value of testscore can satisfy more than one expression in the compound statement: 76 >= 70 and 76 >= 60. However, once a condition is satisfied, the appropriate statements are executed (grade = 'C';) and the remaining conditions are not evaluated.

The switch Statement

Unlike if-then and if-then-else statements, the switch statement can have a number of possible execution paths. A switch works with the byte, short, char, and int primitive data types. It also works with enumerated types (discussed in Chapter 4, “Enum Types”), the String class, and a few special classes that wrap certain primitive types: Character, Byte, Short, and Integer (discussed in Chapter 9).

The following code example, SwitchDemo, declares an int named month whose value represents a month. The code displays the name of the month, based on the value of month, using the switch statement:

public class SwitchDemo {
    public static void main(String[] args) {

        int month = 8;
        String monthString;
        switch (month) {
            case 1: monthString = "January";
                     break;
            case 2: monthString = "February";
                     break;
            case 3: monthString = "March";
                     break;
            case 4: monthString = "April";
                     break;
            case 5: monthString = "May";
                     break;
            case 6: monthString = "June";
                     break;
            case 7: monthString = "July";
                     break;
            case 8: monthString = "August";
                     break;
            case 9: monthString = "September";
                     break;
            case 10: monthString = "October";
                     break;
            case 11: monthString = "November";
                     break;
            case 12: monthString = "December";
                     break;
            default: monthString = "Invalid month";
                     break;
        }
        System.out.println(monthString);
    }
}

In this case, August is printed to standard output.

The body of a switch statement is known as a switch block. A statement in the switch block can be labeled with one or more case or default labels. The switch statement evaluates its expression and then executes all statements that follow the matching case label.

You could also display the name of the month with if-then-else statements:

int month = 8;
if (month == 1) {
    System.out.println("January");
} else if (month == 2) {
    System.out.println("February");
}
// ... and so on

The choice between if-then-else statements or a switch statement depends on readability and the expression that the statement is testing. An if-then-else statement can test expressions based on ranges of values or conditions, whereas a switch statement tests expressions based only on a single integer, enumerated value, or String object.

Another point of interest is the break statement. Each break statement terminates the enclosing switch statement. Control flow continues with the first statement following the switch block. The break statements are necessary because without them, statements in switch blocks fall through: All statements after the matching case label are executed in sequence, regardless of the expression of subsequent case labels, until a break statement is encountered. The program SwitchDemoFallThrough shows statements in a switch block that fall through; it displays the month corresponding to the integer month and the months that follow in the year:

public class SwitchDemoFallThrough {
    public static void main(String[] args) {
        java.util.ArrayList<String> futureMonths =
            new java.util.ArrayList<String>();

        int month = 8;

        switch (month) {
            case 1: futureMonths.add("January");
            case 2: futureMonths.add("February");
            case 3: futureMonths.add("March");
            case 4: futureMonths.add("April");
            case 5: futureMonths.add("May");
            case 6: futureMonths.add("June");
            case 7: futureMonths.add("July");
            case 8: futureMonths.add("August");
            case 9: futureMonths.add("September");
            case 10: futureMonths.add("October");
            case 11: futureMonths.add("November");
            case 12: futureMonths.add("December");
                     break;
            default: break;
        }


        if (futureMonths.isEmpty()) {
            System.out.println("Invalid month number");
        } else {
            for (String monthName : futureMonths) {
               System.out.println(monthName);
            }
        }
    }
}

This is the output from the code:

  • August
  • September
  • October
  • November
  • December

Technically, the final break is not required because flow falls out of the switch statement. Using a break is recommended so that modifying the code is easier and less error prone. The default section handles all values that are not explicitly handled by one of the case sections.

The following code example, SwitchDemo2, shows how a statement can have multiple case labels. The code example calculates the number of days in a particular month:

class SwitchDemo2 {
    public static void main(String[] args) {

        int month = 2;
        int year = 2000;
        int numDays = 0;

        switch (month) {
            case 1: case 3: case 5:
            case 7: case 8: case 10:
            case 12:
                numDays = 31;
                break;
            case 4: case 6:
            case 9: case 11:
                numDays = 30;
                break;
            case 2:
                if (((year % 4 == 0) &&
                     !(year % 100 == 0))
                     || (year % 400 == 0))
                    numDays = 29;
                else
                    numDays = 28;
                break;
            default:
                System.out.println("Invalid month.");

                break;
        }
        System.out.println("Number of Days = "
                           + numDays);
    }
}

This is the output from the code:

Number of Days = 29

Using Strings in switch Statements

You can use a String object in the switch statement’s expression. The following code example, StringSwitchDemo, displays the number of the month based on the value of the String named month:

public class StringSwitchDemo {

    public static int getMonthNumber(String month) {

        int monthNumber = 0;

        if (month == null) {
            return monthNumber;
        }

        switch (month.toLowerCase()) {
            case "january":
                monthNumber = 1;
                break;
            case "february":
                monthNumber = 2;
                break;
            case "march":
                monthNumber = 3;
                break;
            case "april":
                monthNumber = 4;
                break;
            case "may":
                monthNumber = 5;
                break;
            case "june":
                monthNumber = 6;
                break;
            case "july":
                monthNumber = 7;
                break;
            case "august":
                monthNumber = 8;
                break;
            case "september":
                monthNumber = 9;
                break;

            case "october":
                monthNumber = 10;
                break;
            case "november":
                monthNumber = 11;
                break;
            case "december":
                monthNumber = 12;
                break;
            default:
                monthNumber = 0;
                break;
        }

        return monthNumber;
    }

    public static void main(String[] args) {

        String month = "August";

        int returnedMonthNumber =
            StringSwitchDemo.getMonthNumber(month);

        if (returnedMonthNumber == 0) {
            System.out.println("Invalid month");
        } else {
            System.out.println(returnedMonthNumber);
        }
    }
}

The output from this code is 8.

The String in the switch expression is compared with the expressions associated with each case label, as if the String.equals9 method was being used. In order for the StringSwitchDemo example to accept any month regardless of case, month is converted to lowercase (with the toLowerCase10 method) and all the strings associated with the case labels are in lowercase.

The while and do-while Statements

The while statement continually executes a block of statements while a particular condition is true. Its syntax can be expressed as follows:

while (expression) {
     statement(s)
}

The while statement evaluates expression, which must return a boolean value. If the expression evaluates to true, the while statement executes the statement(s) in the while block. The while statement continues testing the expression and executing its block until the expression evaluates to false. Using the while statement to print the values from 1 through 10 can be accomplished via the following WhileDemo program:

class WhileDemo {
    public static void main(String[] args){
        int count = 1;
        while (count < 11) {
            System.out.println("Count is: " + count);
            count++;
        }
    }
}

You can implement an infinite loop using the while statement as follows:

while (true){
    // your code goes here
}

The Java programming language also provides a do-while statement, which can be expressed as follows:

do {
     statement(s)
} while (expression);

The difference between do-while and while is that do-while evaluates its expression at the bottom of the loop instead of the top. Therefore, the statements within the do block are always executed at least once, as shown in the following DoWhileDemo program:

class DoWhileDemo {
    public static void main(String[] args){
        int count = 1;
        do {

            System.out.println("Count is: " + count);
            count++;
        } while (count < 11);
    }
}

The for Statement

The for statement provides a compact way to iterate over a range of values. Programmers often refer to it as the for loop because of the way it repeatedly loops until a particular condition is satisfied. The general form of the for statement can be expressed as follows:

for (initialization; termination; increment) {
    statement(s)
}

When using this version of the for statement, keep the following in mind:

  • The initialization expression initializes the loop; it’s executed once as the loop begins.
  • When the termination expression evaluates to false, the loop terminates.
  • The increment expression is invoked after each iteration through the loop; it is perfectly acceptable for this expression to increment or decrement a value.

The following program, ForDemo, uses the general form of the for statement to print the numbers 1 through 10 to standard output:

class ForDemo {
    public static void main(String[] args){
         for(int i=1; i<11; i++){
              System.out.println("Count is: " + i);
         }
    }
}

Here is the output of this program:

  • Count is: 1
  • Count is: 2
  • Count is: 3
  • Count is: 4
  • Count is: 5
  • Count is: 6
  • Count is: 7
  • Count is: 8
  • Count is: 9
  • Count is: 10

Notice how the code declares a variable within the initialization expression. The scope of this variable extends from its declaration to the end of the block governed by the for statement, so it can be used in the termination and increment expressions as well. If the variable that controls a for statement is not needed outside the loop, it’s best to declare the variable in the initialization expression. The names i, j, and k are often used to control for loops; declaring them within the initialization expression limits their life span and reduces errors.

The three expressions of the for loop are optional; an infinite loop can be created as follows:

// infinite loop
for ( ; ; ) {

    // your code goes here
}

The for statement also has another form designed for iteration through collections and arrays. This form is sometimes referred to as the enhanced for statement and can be used to make your loops more compact and easier to read. To demonstrate, consider the following array, which holds the numbers 1 through 10:

int[] numbers = {1,2,3,4,5,6,7,8,9,10};

The following program, EnhancedForDemo, uses the enhanced for to loop through the array:

class EnhancedForDemo {
    public static void main(String[] args){
         int[] numbers =
             {1,2,3,4,5,6,7,8,9,10};
         for (int item : numbers) {
             System.out.println("Count is: " + item);
         }
    }
}

In this example, the variable item holds the current value from the numbers array. The output from this program is the same as before:

  • Count is: 1
  • Count is: 2
  • Count is: 3
  • Count is: 4
  • Count is: 5
  • Count is: 6
  • Count is: 7
  • Count is: 8
  • Count is: 9
  • Count is: 10

We recommend using this form of the for statement instead of the general form whenever possible.

Branching Statements

The break Statement

The break statement has two forms: labeled and unlabeled. You saw the unlabeled form in the previous discussion of the switch statement. You can also use an unlabeled break to terminate a for, while, or do-while loop, as shown in the following BreakDemo program:

class BreakDemo {
    public static void main(String[] args) {

        int[] arrayOfInts =
            { 32, 87, 3, 589,
              12, 1076, 2000,
              8, 622, 127 };
        int searchfor = 12;

        int i;
        boolean foundIt = false;

        for (i = 0; i < arrayOfInts.length; i++) {
            if (arrayOfInts[i] == searchfor) {
                foundIt = true;
                break;
            }
        }

        if (foundIt) {
            System.out.println("Found " + searchfor + " at index " + i);
        } else {
            System.out.println(searchfor + " not in the array");
        }
    }
}

This program searches for the number 12 in an array. The break statement, shown in boldface, terminates the for loop when that value is found. Control flow then transfers to the statement after the for loop. This program’s output is as follows:

Found 12 at index 4

An unlabeled break statement terminates the innermost switch, for, while, or do-while statement, but a labeled break terminates an outer statement. The following program, BreakWithLabelDemo, is similar to the previous program but uses nested for loops to search for a value in a two-dimensional array. When the value is found, a labeled break terminates the outer for loop (labeled search):

class BreakWithLabelDemo {
    public static void main(String[] args) {

        int[][] arrayOfInts = {
            { 32, 87, 3, 589 },
            { 12, 1076, 2000, 8 },
            { 622, 127, 77, 955 }
        };
        int searchfor = 12;

        int i;
        int j = 0;
        boolean foundIt = false;

    search:
        for (i = 0; i < arrayOfInts.length; i++) {
            for (j = 0; j < arrayOfInts[i].length;
                 j++) {
                if (arrayOfInts[i][j] == searchfor) {
                    foundIt = true;
                    break search;
                }
            }
        }

        if (foundIt) {
            System.out.println("Found " + searchfor + " at " + i + ", " + j);
        } else {
            System.out.println(searchfor + " not in the array");
        }
    }
}

This is the output of the program:

Found 12 at 1, 0

The break statement terminates the labeled statement; it does not transfer the flow of control to the label. Control flow is transferred to the statement immediately following the labeled (terminated) statement.

The continue Statement

The continue statement skips the current iteration of a for, while, or do-while loop. The unlabeled form skips to the end of the innermost loop’s body and evaluates the boolean expression that controls the loop. The following program, ContinueDemo, steps through a String, counting the occurrences of the letter p. If the current character is not a p, the continue statement skips the rest of the loop and proceeds to the next character. If it is a p, the program increments the letter count:

class ContinueDemo {
    public static void main(String[] args) {


        String searchMe = "peter piper picked a " + "peck of pickled peppers";
        int max = searchMe.length();
        int numPs = 0;

        for (int i = 0; i < max; i++) {
            // interested only in p's
            if (searchMe.charAt(i) != 'p')
                continue;

            // process p's
            numPs++;
        }
        System.out.println("Found " + numPs + " p's in the string.");
    }
}

Here is the output of this program:

Found 9 p's in the string.

To see this effect more clearly, try removing the continue statement and recompiling. When you run the program again, the count will be wrong, saying that it found 35 p’s instead of 9.

A labeled continue statement skips the current iteration of an outer loop marked with the given label. The following example program, ContinueWithLabelDemo, uses nested loops to search for a substring within another string. Two nested loops are required: one to iterate over the substring and another to iterate over the string being searched. The following program, ContinueWithLabelDemo, uses the labeled form of the continue statement to skip an iteration in the outer loop:

class ContinueWithLabelDemo {
    public static void main(String[] args) {

        String searchMe = "Look for a substring in me";
        String substring = "sub";
        boolean foundIt = false;

        int max = searchMe.length() -
                  substring.length();

    test:
        for (int i = 0; i <= max; i++) {
            int n = substring.length();
            int j = i;
            int k = 0;
            while (n-- != 0) {
                if (searchMe.charAt(j++) != substring.charAt(k++)) {
                    continue test;
                }
            }

            foundIt = true;
                break test;
        }
        System.out.println(foundIt ? "Found it" : "Didn't find it");
    }
}

Here is the output from this program:

Found it

The return Statement

The last of the branching statements is the return statement. The return statement exits from the current method, and control flow returns to where the method was invoked. The return statement has two forms: one that returns a value and another that doesn’t. To return a value, simply put the value (or an expression that calculates the value) after the return keyword:

return ++count;

The data type of the returned value must match the type of the method’s declared return value. When a method is declared void, use the form of return that doesn’t return a value:

return;

Chapter 4 covers everything you need to know about writing methods.

Summary of Control Flow Statements

The if-then statement is the most basic of all the control flow statements. It tells your program to execute a certain section of code only if a particular test evaluates to true. The if-then-else statement provides a secondary path of execution when an “if” clause evaluates to false. Unlike if-then and if-then-else, the switch statement allows for any number of possible execution paths. The while and do-while statements continually execute a block of statements while a particular condition is true. The difference between do-while and while is that do-while evaluates its expression at the bottom of the loop instead of the top. Therefore, the statements within the do block are always executed at least once. The for statement provides a compact way to iterate over a range of values. It has two forms, one of which was designed for looping through collections and arrays.

Questions and Exercises: Control Flow Statements

Questions

  1. The most basic control flow statement supported by the Java programming language is the ___ statement.
  2. The ___ statement allows for any number of possible execution paths.
  3. The ___ statement is similar to the while statement but evaluates its expression at the ___ of the loop.
  4. How do you write an infinite loop using the for statement?
  5. How do you write an infinite loop using the while statement?

Exercises

  1. Consider the following code snippet:

    if (aNumber >= 0)
        if (aNumber == 0)
            System.out.println("first string");
    else System.out.println("second string");
    System.out.println("third string");
    1. What output do you think the code will produce if aNumber is 3?
    2. Write a test program containing the previous code snippet; make aNumber 3. What is the output of the program? Is it what you predicted? Explain why the output is what it is; in other words, what is the control flow for the code snippet?
    3. Using only spaces and line breaks, reformat the code snippet to make the control flow easier to understand.
    4. Use braces, { and }, to further clarify the code.

Answers

You can find answers to these questions and exercises at http://docs.oracle.com/javase/tutorial/java/nutsandbolts/QandE/answers_flow.html.

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020