Home > Articles > Web Services > Cloud Computing

  • Print
  • + Share This
This chapter is from the book

Phase 1: Hadoop on Demand

The Hadoop on Demand (HOD) project was a system for provisioning and managing Hadoop MapReduce and HDFS instances on a shared cluster of commodity hardware. The Hadoop on Demand project predated and directly influenced how the developers eventually arrived at YARN’s architecture. Understanding the HOD architecture and its eventual limitations is a first step toward comprehending YARN’s motivations.

To address the multitenancy woes with the manually shared clusters from the previous incarnation (Phase 0), HOD used a traditional resource manager—Torque—together with a cluster scheduler—Maui—to allocate Hadoop clusters on a shared pool of nodes. Traditional resource managers were already being used elsewhere in high-performance computing environments to enable effective sharing of pooled cluster resources. By making use of such existing systems, HOD handed off the problem of cluster management to systems outside of Hadoop. On the allocated nodes, HOD would start MapReduce and HDFS daemons, which in turn would serve the user’s data and application requests. Thus, the basic system architecture of HOD included these layers:

  • A ResourceManager (RM) together with a scheduler
  • Various HOD components to interact with the RM/scheduler and manage Hadoop
  • Hadoop MapReduce and HDFS daemons
  • A HOD shell and Hadoop clients

A typical session of HOD involved three major steps: allocate a cluster, run Hadoop jobs on the allocated cluster, and finally deallocate the cluster. Here is a brief description of a typical HOD-user session:

  • Users would invoke a HOD shell and submit their needs by supplying a description of an appropriately sized compute cluster to Torque. This description included:

    • The number of nodes needed
    • A description of a special head-process called the RingMaster to be started by the ResourceManager
    • A specification of the Hadoop deployment desired
  • Torque would enqueue the request until enough nodes become available. Once the nodes were available, Torque started the head-process called RingMaster on one of the compute nodes.
  • The RingMaster was a HOD component and used another ResourceManager interface to run the second HOD component, HODRing—with one HODRing being present on each of the allocated compute nodes.
  • The HODRings booted up, communicated with the RingMaster to obtain Hadoop commands, and ran them accordingly. Once the Hadoop daemons were started, HODRings registered with the RingMaster, giving information about the daemons.
  • The HOD client kept communicating with the RingMaster to find out the location of the JobTracker and HDFS daemons.
  • Once everything was set up and the users learned the JobTracker and HDFS locations, HOD simply got out the way and allowed the user to perform his or her data crunching on the corresponding clusters.
  • The user released a cluster once he or she was done running the data analysis jobs.

    Figure 1.1 provides an overview of the HOD architecture.

    Figure 1.1

    Figure 1.1 Hadoop on Demand architecture

HDFS in the HOD World

While HOD could also deploy HDFS clusters, most users chose to deploy the compute nodes across a shared HDFS instance. In a typical Hadoop cluster provisioned by HOD, cluster administrators would set up HDFS statically (without using HOD). This allowed data to be persisted in HDFS even after the HOD-provisioned clusters were deallocated. To use a statically configured HDFS, a user simply needed to point to an external HDFS instance. As HDFS scaled further, more compute clusters could be allocated through HOD, creating a cycle of increased experimentation by users over more data sets, leading to a greater return on investment. Because most user-specific MapReduce clusters were smaller than the largest HOD jobs possible, the JobTracker running for any single HOD cluster was rarely a bottleneck.

Features and Advantages of HOD

Because HOD sets up a new cluster for every job, users could run older and stable versions of Hadoop software while developers continued to test new features in isolation. Since the Hadoop community typically released a major revision every three months, the flexibility of HOD was critical to maintaining that software release schedule—we refer to this decoupling of upgrade dependencies as [Requirement 2] Serviceability.

  • [Requirement 2] Serviceability

    The next-generation compute platform should enable evolution of cluster software to be completely decoupled from users’ applications.

In addition, HOD made it easy for administrators and users to quickly set up and use Hadoop on an existing cluster under a traditional resource management system. Beyond Yahoo!, universities and high-performance computing environments could run Hadoop on their existing clusters with ease by making use of HOD. It was also a very useful tool for Hadoop developers and testers who needed to share a physical cluster for testing their own Hadoop versions.

Log Management

HOD could also be configured to upload users’ job logs and the Hadoop daemon logs to a configured HDFS location when a cluster was deallocated. The number of log files uploaded to and retained on HDFS could increase over time in an unbounded manner. To address this issue, HOD shipped with tools that helped administrators manage the log retention by removing old log files uploaded to HDFS after a specified amount of time had elapsed.

Multiple Users and Multiple Clusters per User

As long as nodes were available and organizational policies were not violated, a user could use HOD to allocate multiple MapReduce clusters simultaneously. HOD provided the list and the info operations to facilitate the management of multiple concurrent clusters. The list operation listed all the clusters allocated so far by a user, and the info operation showed information about a given cluster—Torque job ID, locations of the important daemons like the HOD RingMaster process, and the RPC addresses of the Hadoop JobTracker and NameNode daemons.

The resource management layer had some ways of limiting users from abusing cluster resources, but the user interface for exposing those limits was poor. HOD shipped with scripts that took care of this integration so that, for instance, if some user limits were violated, HOD would update a public job attribute that the user could query against.

HOD also had scripts that integrated with the resource manager to allow a user to identify the account under which the user’s Hadoop clusters ran. This was necessary because production systems on traditional resource managers used to manage accounts separately so that they could charge users for using shared compute resources.

Ultimately, each node in the cluster could belong to only one user’s Hadoop cluster at any point of time—a major limitation of HOD. As usage of HOD grew along with its success, requirements around [Requirement 3] Multitenancy started to take shape.

  • [Requirement 3] Multitenancy

    The next-generation compute platform should support multiple tenants to coexist on the same cluster and enable fine-grained sharing of individual nodes among different tenants.

Distribution of Hadoop Software

When provisioning Hadoop, HOD could either use a preinstalled Hadoop instance on the cluster nodes or request HOD to distribute and install a Hadoop tarball as part of the provisioning operation. This was especially useful in a development environment where individual developers might have different versions of Hadoop to test on the same shared cluster.


HOD provided a very convenient mechanism to configure both the boot-up HOD software itself and the Hadoop daemons that it provisioned. It also helped manage the configuration files that it generated on the client side.

Auto-deallocation of Idle Clusters

HOD used to automatically deallocate clusters that were not running Hadoop jobs for a predefined period of time. Each HOD allocation included a monitoring facility that constantly checked for any running Hadoop jobs. If it detected no running Hadoop jobs for an extended interval, it automatically deallocated its own cluster, freeing up those nodes for future use.

Shortcomings of Hadoop on Demand

Hadoop on Demand proved itself to be a powerful and very useful platform, but Yahoo! ultimately had to retire it in favor of directly shared MapReduce clusters due to many of its shortcomings.

Data Locality

For any given MapReduce job, during the map phase the JobTracker makes every effort to place tasks close to their input data in HDFS—ideally on a node storing a replica of that data. Because Torque doesn’t know how blocks are distributed on HDFS, it allocates nodes without accounting for locality. The subset of nodes granted to a user’s JobTracker will likely contain only a handful of relevant replicas and, if the user is unlucky, none. Many Hadoop clusters are characterized by a small number of very big jobs and a large number of small jobs. For most of the small jobs, most reads will emanate from remote hosts because of the insufficient information available from Torque.

Efforts were undertaken to mitigate this situation but achieved mixed results. One solution was to spread TaskTrackers across racks by modifying Torque/Maui itself and making them rack-aware. Once this was done, any user’s HOD compute cluster would be allocated nodes that were spread across racks. This made intra-rack reads of shared data sets more likely, but introduced other problems. The transfer of records between map and reduce tasks as part of MapReduce’s shuffle phase would necessarily cross racks, causing a significant slowdown of users’ workloads.

While such short-term solutions were implemented, ultimately none of them proved ideal. In addition, they all pointed to the fundamental limitation of the traditional resource management software—that is, the ability to understand data locality as a first-class dimension. This aspect of [Requirement 4] Locality Awareness is a key requirement for YARN.

  • [Requirement 4] Locality Awareness

    The next-generation compute platform should support locality awareness—moving computation to the data is a major win for many applications.

Cluster Utilization

MapReduce jobs consist of multiple stages: a map stage followed by a shuffle and a reduce stage. Further, high-level frameworks like Apache Pig and Apache Hive often organize a workflow of MapReduce jobs in a directed-acyclic graph (DAG) of computations. Because clusters were not resizable between stages of a single job or between jobs when using HOD, most of the time the major share of the capacity in a cluster would be barren, waiting for the subsequent slimmer stages to be completed. In an extreme but very common scenario, a single reduce task running on one node could prevent a cluster of hundreds of nodes from being reclaimed. When all jobs in a colocation were considered, this approach could result in hundreds of nodes being idle in this state.

In addition, private MapReduce clusters for each user implied that even after a user was done with his or her workflows, a HOD cluster could potentially be idle for a while before being automatically detected and shut down.

While users were fond of many features in HOD, the economics of cluster utilization ultimately forced Yahoo! to pack its users’ jobs into shared clusters. [Requirement 5] High Cluster Utilization is a top priority for YARN.

  • [Requirement 5] High Cluster Utilization

    The next-generation compute platform should enable high utilization of the underlying physical resources.


In a typical Hadoop workflow, MapReduce jobs have lots of maps with a much smaller number of reduces, with map tasks being short and quick and reduce tasks being I/O heavy and longer running. With HOD, users relied on few heuristics when estimating how many nodes their jobs required—typically allocating their private HOD clusters based on the required number of map tasks (which in turn depends on the input size). In the past, this was the best strategy for users because more often than not, job latency was dominated by the time spent in the queues waiting for the allocation of the cluster. This strategy, although the best option for individual users, leads to bad scenarios from the overall cluster utilization point of view. Specifically, sometimes all of the map tasks are finished (resulting in idle nodes in the cluster) while a few reduce tasks simply chug along for a long while.

Hadoop on Demand did not have the ability to grow and shrink the MapReduce clusters on demand for a variety of reasons. Most importantly, elasticity wasn’t a first-class feature in the underlying ResourceManager itself. Even beyond that, as jobs were run under a Hadoop cluster, growing a cluster on demand by starting TaskTrackers wasn’t cheap. Shrinking the cluster by shutting down nodes wasn’t straightforward, either, without potentially massive movement of existing intermediate outputs of map tasks that had already run and finished on those nodes.

Further, whenever cluster allocation latency was very high, users would often share long-awaited clusters with colleagues, holding on to nodes for longer than anticipated, and increasing latencies even further.

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020