Home > Articles > Home & Office Computing > Microsoft Applications

📄 Contents

  1. Classifying According to Existing Categories
  2. Classifying According to Naturally Occurring Clusters
  3. Some Terminology Problems
  • Print
  • + Share This
This chapter is from the book

This chapter is from the book

Classifying According to Naturally Occurring Clusters

In contrast to the techniques that I’ve briefly outlined in the preceding sections, the second set of analytic techniques that this book discusses does not necessarily start out with reference samples that include actual category membership. Instead, it’s hoped that the categories (often termed clusters in these methods) will emerge from combinations of the measured variables, combinations established and assessed by the software you use.

Principal Components Analysis

The book moves back to genuinely multivariate analysis in Chapter 7, “Principal Components Analysis.” This approach dates back to the beginning of the twentieth century and is therefore the oldest of the analytic techniques discussed in this book. Principal components analysis is the precursor to factor analysis, both historically and procedurally. Factor analysis began to gain currency in the 1930s, roughly 25 years after Karl Pearson was doing early work on principal components. And factor analysis nearly always starts with a principal components analysis, although the numeric inputs might be slightly different and the purposes of the two techniques aren’t quite the same.

The idea behind principal components analysis is that it’s possible to combine several measured variables into a single principal component (or, equivalently, many measured variables into just a few principal components) without losing a significant amount of meaningful information. The result is a much simpler data set that the researcher can investigate more easily. The same is true for factor analysis, but there the emphasis is on understanding how a factor, or component, which is not directly observable or measurable is expressed in variables that, in contrast, can be measured.

So far as I can tell, principal components analysis was used in just this way until the mid-1960s, when researchers in various fields began to notice that principal components analysis might also be useful for the purpose of classification. It can happen—and Chapter 7 details a couple of examples—that when you extract a few principal components from a larger number of measured variables, the records cluster together in the space that’s defined by the principal components. Along with the Excel workbook for Chapter 7 you’ll find a file named Factor.xls, which runs a principal components analysis for you and performs a Varimax rotation of the components’ axes.

If those clusters make sense, you might well be onto a finding that’s really compelling. But great care is needed: Methods that work with data that includes no information about actual membership are particularly susceptible to nonsense results. And when the composition of the clusters conforms to what you expect, it’s even more important to have another data sample at hand so that you can validate your results.

If the first analysis results in ridiculous cluster assignments, you’re probably not tempted to think that you’re on to something. If the cluster assignments make sense, it’s incumbent on you to replicate the finding. (You don’t want to claim that you’ve achieved cold fusion on your kitchen table if you can’t do it more than once.)

But principal components analysis has another role to play in the classification of records. Among the characteristics of the components you extract from a raw data set are the following:

  • The components are uncorrelated. This characteristic has several advantages. One relatively minor advantage is that the components are orthogonal—their axes are at right angles to one another, which can make the interpretation less ambiguous.
  • Another, more important advantage is that because two uncorrelated components cannot share variance, it’s possible to set aside as irrelevant components that are extracted later in the process. Components have characteristics called eigenvalues that can tell you how much of the overall variance in the data set each component accounts for.

You can often remove components with low eigenvalues from subsequent analysis. Doing so tends to discard junk variation: measurement error, sampling error, variation that’s specific to a particular variable and therefore contrary to the notion of a “component.”

All this is consistent with the basic notion of principal components: to find combinations of variables that bring important, meaningful variation along with them and that leave irrelevant, misleading variation behind. You also wind up with (usually) many fewer components than there were measured variables, and that eases the task of making sense of the results.

When you get rid of irrelevant, nuisance variation, you can work instead with relatively clean components. That can make the groups subsequently derived by cluster analysis much clearer.

Unfortunately, even if the groups are clear, well separated, and distinct, it doesn’t necessarily follow that they mean anything. Again, the better the results look at first, the more important it is to replicate them, validate them, and verify them.

Among the techniques that are particularly improved by the use of principal components instead of the raw data are those that are collectively termed cluster analysis.

Cluster Analysis

Cluster analysis is distinguished from other approaches to classification by the fact that it does not require you to know up front what category—that is, what cluster—each record in your data set belongs to. True, principal components analysis doesn’t either, but although it’s useful as a tool in classification, it’s not intended as a classification technique.

The two different branches of cluster analysis, the linkage methods and the centroid-based methods, are both designed to cause clusters to emerge from the variables (or, as I indicated in the previous section, the principal components) that you supply.

Methods such as discriminant analysis and logistic regression require you to supply a reference sample, one that separates a sample of records into the categories you’re interested in. You develop your classification equation using that data set. Later on you apply the equation to records that are as yet unclassified.

Cluster analysis works differently. The algorithms look for records that are similar to one another, and assign (and reassign) those records to the same clusters. Typically, the algorithms keep plugging away until no records are reassigned during an iteration through the loop.

One problem that arises early when you’re deciding on a clustering method is the question of what constitutes similarity. There are various ways to define similarity, and perhaps the most popular is by way of a distance measure: how far a given record is from another record, or from the center of a cluster.

It complicates matters that there are several types of distance. Ordinary Euclidean distance is one: The width of this sepal is 3.5 centimeters, and the width of that sepal is 3.75 centimeters. For various reasons, the Euclidean distance is usually squared: The squared Euclidean distance between the width of the two sepals is (3.75 – 3.5)2. After some further calculations, though, some analyses take the square root of the results to return to a simple Euclidean metric.

Another type of distance measure is the familiar Pearson correlation (although the larger the correlation, the closer the records). Using Pearson correlation as a distance measure forces the standardization of the measures, and so the effect of the scale of the original measurement is removed.

Yet another measure is Mahalanobis’ D2, which incorporates the variables’ covariances into the squared Euclidean distance, so that the variables are not necessarily and automatically regarded as orthogonal to one another.

Measures of similarity are not limited to distances, though. Agreement measures are sometimes used: “Both these people have studied calculus.” But the math involved in handling agreement measures is not as straightforward as it is for distance measures.

Furthermore, with agreement measures you have to watch what you’re using to indicate similarity. If two people both own 1920 Duesenberg autos, that’s likely a more meaningful index of similarity than if two people don’t own Duesenbergs.

Because squared Euclidean distances represent something of a standard method of measurement in cluster analysis, I stick with them as measures of similarity in this book’s examples (see Chapter 8, “Cluster Analysis: The Basics,” and Chapter 9, “Cluster Analysis: Further Issues”).

The two branches of cluster analysis that I mentioned earlier, linkage methods and centroid-based methods, frequently return different results. Because cluster analysis is at root an exploratory method, one that seeks to establish undefined clusters, you might want to consider running both methods to determine which, if either, results in clusters that make sense to you.

The linkage methods work from the ground up, starting with the two records that have the smallest distance between them and calling those two records a cluster. Then the record with the smallest distance to that cluster’s centroid is found, and that distance is compared to the smallest distance between that record and another single record. If the distance to the existing cluster is smaller, the third record is assigned to that cluster. But if the distance to another individual record is smaller, a new cluster is created. (Several different definitions of “smallest” distance exist in the linkage methods, including single linkage, complete linkage, and average linkage.)

The most popular of the centroid-based methods is k-means, where “k” simply refers to the number of continuous variables involved. K-means is more of a top-down approach than are the linkage methods. Further, you are expected to specify the number of clusters to establish. The centroids of each cluster are established randomly at the outset, and the process continues by assigning and reassigning individual records to their nearest cluster, updating the centroid values accordingly, until a journey through the loop causes no records to be reassigned to a different cluster.

The Excel workbooks available for download from the publisher’s website include a workbook with VBA code that performs k-means analysis for you.

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020