Working with Operators and Control Flow in C#

This chapter is from the book

Bitwise Operators (<<, >>, |, &, ^, ~)

An additional set of operators that is common to virtually all programming languages is the set of operators for manipulating values in their binary formats: the bit operators.

Shift Operators (<<, >>, <<=, >>=)

Sometimes you want to shift the binary value of a number to the right or left. In executing a left shift, all bits in a number’s binary representation are shifted to the left by the number of locations specified by the operand on the right of the shift operator. Zeroes are then used to backfill the locations on the right side of the binary number. A right-shift operator does almost the same thing in the opposite direction. However, if the number is a negative value of a signed type, the values used to backfill the left side of the binary number are ones and not zeroes. The shift operators are >> and <<, the right-shift and left-shift operators, respectively. In addition, there are combined shift and assignment operators, <<= and >>=.

Consider the following example. Suppose you had the int value -7, which would have a binary representation of 1111 1111 1111 1111 1111 1111 1111 1001. In Listing 3.37, you right-shift the binary representation of the number –7 by two locations.

Listing 3.37. Using the Right-Shift Operator

```int x;
x = (-7 >> 2); // 11111111111111111111111111111001 becomes
// 11111111111111111111111111111110
// Write out "x is -2."
System.Console.WriteLine(`"x = {0}."`, x);
```

Output 3.17 shows the results of Listing 3.37.

Output 3.17.

`x = -2.`

Because of the right shift, the value of the bit in the rightmost location has “dropped off” the edge and the negative bit indicator on the left shifts by two locations to be replaced with 1s. The result is -2.

Although legend has it that x << 2 is faster than x * 4, do not use bit shift operators for multiplication or division. This might have been true in certain C compilers in the 1970s, but modern compilers and modern microprocessors are perfectly capable of optimizing arithmetic. Using shifting for multiplication or division is confusing and frequently leads to errors when code maintainers forget that the shift operators are lower precedence than the arithmetic operators.

Bitwise Operators (&, |, ^)

In some instances, you might need to perform logical operations, such as AND, OR, and XOR, on a bit-by-bit basis for two operands. You do this via the &, |, and ^ operators, respectively.

Listing 3.38 demonstrates how to use these bitwise operators. The results of Listing 3.38 appear in Output 3.18.

Listing 3.38. Using Bitwise Operators

````byte` and, or, xor;
and = 12 & 7;   // and = 4
or = 12 | 7;    // or = 15
xor = 12 ^ 7;   // xor = 11
System.Console.WriteLine(
`"and = {0} \nor = {1}\nxor = {2}"`,
and, or, xor);
```

Output 3.18.

```and = 4
or = 15
xor = 11```

In Listing 3.38, the value 7 is the mask; it is used to expose or eliminate specific bits within the first operand using the particular operator expression. Note that, unlike the AND (&&) operator, the & operator always evaluates both sides even if the left portion is false. Similarly, the | version of the OR operator is not “short-circuiting.” It always evaluates both operands even if the left operand is true. The bit versions of the AND and OR operators, therefore, are not short-circuiting.

In order to convert a number to its binary representation, you need to iterate across each bit in a number. Listing 3.39 is an example of a program that converts an integer to a string of its binary representation. The results of Listing 3.39 appear in Output 3.19.

Listing 3.39. Getting a String Representation of a Binary Display

````public class` BinaryConverter
{
`public static void` Main()
{
`const int` size = 64;
`ulong` value;
`char` bit;

System.Console.Write (`"Enter an integer: "`);
// Use long.Parse() so as to support negative numbers
// Assumes unchecked assignment to ulong.
value = (`ulong`)`long`.Parse(System.Console.ReadLine());

// Set initial mask to 100....
`ulong` mask = 1UL << size - 1;
`for` (`int` count = 0; count < size; count++)
{
bit = ((mask & value) != 0) ? `'1'`: `'0'`;
System.Console.Write(bit);
// Shift mask one location over to the right
}
System.Console.WriteLine();
}
}
```

Output 3.19.

```Enter an integer: 42
0000000000000000000000000000000000000000000000000000000000101010```

Notice that within each iteration of the for loop (discussed later in this chapter), you use the right-shift assignment operator to create a mask corresponding to each bit position in value. By using the & bit operator to mask a particular bit, you can determine whether the bit is set. If the mask test produces a nonzero result, you write 1 to the console; otherwise, 0 is written. In this way, you create output describing the binary value of an unsigned long.

Note also that the parentheses in (mask & value) != 0 are necessary because inequality is higher precedence than the AND operator; without the explicit parentheses this would be equivalent to mask & (value != 0), which does not make any sense; the left side of the & is a ulong and the right side is a bool.

Bitwise Compound Assignment Operators (&=, |=, ^=)

Not surprisingly, you can combine these bitwise operators with assignment operators as follows: &=, |=, and ^=. As a result, you could take a variable, OR it with a number, and assign the result back to the original variable, which Listing 3.40 demonstrates.

Listing 3.40. Using Logical Assignment Operators

````byte` and = 12, or = 12, xor = 12;
and `&=` 7;   // and = 4
or  `|=` 7;   // or = 15
xor `^=` 7;   // xor = 11
System.Console.WriteLine(
`"and = {0} \nor = {1}\nxor = {2}"`,
and, or, xor);
```

The results of Listing 3.40 appear in Output 3.20.

Output 3.20.

```and = 4
or = 15
xor = 11```

Combining a bitmap with a mask using something like fields &= mask clears the bits in fields that are not set in the mask. The opposite, fields &= ~mask, clears out the bits in fields that are set in mask.

Bitwise Complement Operator (~)

The bitwise complement operator takes the complement of each bit in the operand, where the operand can be an int, uint, long, or ulong. ~1, therefore, returns the value with binary notation 1111 1111 1111 1111 1111 1111 1111 1110, and ~(1<<31) returns the number with binary notation 0111 1111 1111 1111 1111 1111 1111 1111.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview

Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security

Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children

This site is not directed to children under the age of 13.

Marketing

Pearson may send or direct marketing communications to users, provided that

• Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
• Such marketing is consistent with applicable law and Pearson's legal obligations.
• Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
• Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out

Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

• As required by law.
• With the consent of the individual (or their parent, if the individual is a minor)
• In response to a subpoena, court order or legal process, to the extent permitted or required by law
• To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
• In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
• To investigate or address actual or suspected fraud or other illegal activities
• To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
• To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
• To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.