# Choosing the Right Algorithm in C++

A More Challenging Example: Rabbit Numbers

## A More Challenging Example: Rabbit Numbers

What’s the best way to calculate the Nth Fibonacci number? This is the famous series of numbers brought from India to Europe by the son of Bonacci (or, in Italian, “Fibonacci”). This number series describes (among a million other things) the growth in population of a pair of rabbits allowed to breed without limit.

There are a couple of issues relevant here to designing and writing a good C++ function.

First, consider data types. If you want to calculate, say, the 60th Fibonacci number, using int or even long int in C++ is inadequate: 32-bit integers provide a range of approximately plus or minus 2 billion… or, if you use unsigned integers, zero to 4 billion. Fibonacci numbers quickly exceed this limitation.

The Fibonacci sequence can make good use of the long long type; the C++11 spec mandates support for this type, but some compiler vendors have supported it for years. A long long is usually a 64-bit integer… providing a range not of 4 billion but the square of that number. (As Carl Sagan would say, “billions and billions!”)

Floating-point numbers provide even larger ranges but are subject to rounding errors. And that, by the way, is why it’s a bad idea to use floating-point for all number storage, as was done in primitive forms of BASIC. Floating-point values tend to be approximations.

You may remember the Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55...

Mathematically, the sequence is expressed as:

```F(0) = 1
F(1) = 1
F(n) = F(n-1) + F(n-2)```

Very elegant. Each Fibonacci is formed by adding the two numbers before it in the sequence. It seems like such a perfect case for recursion, because the definition itself is recursive. The obvious way to write the function is:

```long long fibo(int n) {
if (n > 1)
return fibo(n-1) + fibo(n-2);
else
return 1;
}```

This function is beautiful in its brevity—and also spectacularly inefficient! As n increases, the function calls increase exponentially. By calling fibo(50), you place an astronomical number of function calls on the stack. (Think Carl Sagan again… billions and billions!) One of the reasons this approach is so poor is that it recalculates the same numbers many, many times.

When a straightforward iterative solution is available, it is almost always preferable. Here is the iterative version of Fibonacci-number calculation:

```long long fibo(int n) {
int sum = 1;
int temp1 = 1;
int temp2 = 1;
for (int i = 2; i <= n; i++) {
temp1 = temp2;
temp2 = sum;
sum = temp1 + temp2;
}
return sum;
}```

This version has more lines of code, and yet it calculates fibo(70) in a fraction of a second rather than hours. In this version, each Fibonacci is calculated only once. Each pass of the loop promotes temp1 and temp2 one position forward in the sequence and then recalculates.

Is there a relatively efficient recursive version? Yes, because any iterative algorithm can be rewritten as a recursive one, and vice versa. We can rewrite the function as a recursive version while keeping the basic strategy of iteration: to calculate each Fibonacci exactly once and then promote each of the variables forward in the sequence.

```long long fibo(int n, long long prev1, long long prev2) {
if (n < 2)
return 1;
else if (n == 2)
return prev1 + prev2;
else
return fibo(n-1, prev2, prev1 + prev2);
}```

The initial call to fibo() should use the initial values 1, 1. So, to calculate Fibonacci number 5, for example, make the following function call:’

`     fibo(5, 1, 1);`

This version is (potentially) millions of times more efficient than the first recursive version, because the function calls increase in a linear fashion rather than exponentially. In a sense, this version simulates what the iterative version does: It puts the results of each “loop” (or rather virtual loop) on the stack. The number 5, in this case, is an indicator of how many times the “loop” is to be processed. The values 1, 1 are the initial values. The algorithm then moves forward through the Fibonacci series in a reasonably efficient manner.

Finally, the last two operands (3 and 5) are added, and the value 8 is then returned all the way down the stack, back to the original function call.

But this version is still less efficient than the iterative version—although marginally less so. It's less efficient because it puts the values on the stack and incurs the cost of function-call overhead rather than just accumulating results in local variables temp1 and temp2.

### InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

## Overview

Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

## Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

### Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

### Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

### Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

### Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

### Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

### Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

## Other Collection and Use of Information

### Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

### Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

### Do Not Track

This site currently does not respond to Do Not Track signals.

## Security

Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

## Children

This site is not directed to children under the age of 13.

## Marketing

Pearson may send or direct marketing communications to users, provided that

• Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
• Such marketing is consistent with applicable law and Pearson's legal obligations.
• Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
• Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

## Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

## Choice/Opt-out

Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

## Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

## Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

## Sharing and Disclosure

Pearson may disclose personal information, as follows:

• As required by law.
• With the consent of the individual (or their parent, if the individual is a minor)
• In response to a subpoena, court order or legal process, to the extent permitted or required by law
• To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
• In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
• To investigate or address actual or suspected fraud or other illegal activities
• To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
• To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
• To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.