Home > Articles > Certification > Cisco Certification > CCENT

OSI and TCP/IP Model Layers

A common part of all introductory networking courses is a review of the different network models, including the Open Systems Interconnection (OSI) and Transport Control Protocol/Internet Protocol (TCP/IP) models. Because both models are still used when describing modern day protocols, this article will take a look at both of these models, their layers and how they can be related to each other.
Like this article? We recommend

Like this article? We recommend

A common part of all introductory networking courses is a review of the different network models; these include the Open Systems Interconnection (OSI) and Transport Control Protocol/Internet Protocol (TCP/IP) models. Technically speaking, networks these days typically (almost always) use either the IP version 4 or IP version 6 networking stacks. The OSI and TCP/IP models were developed at parallel times by different organizations. The OSI model was developed by the International Organization of Standardization (ISO) and International Telegraph and Telephone Consultative Committee (CCITT) and the TCP/IP begin development with the US Defense Advanced Research Projects Agency (DARPA). The TCP/IP model is considered less rigid, but is technically more in tune with modern day protocols. Because both models are still used when describing modern day protocols, this article will take a look at both of these models, their layers, and how they can be related to each other.

OSI Model

The OSI model consists of seven different layers that are labeled from 1 through 7; Figure 1 shows a representation of the OSI model:

Figure 1 OSI Model

The Physical Layer (Layer 1)

Layer 1 of the OSI model is named the physical layer because it is responsible for the transmission and reception of wire level data. For example, the physical layer is where it is dictated how bits are represented across a specific networking medium. Regardless of whether the networking medium is electrical or optical in construction, the physical layer handles how data is physically encoded and decoded; examples of this would include whether a specific voltage on an electrical medium represents a 1 or 0 or another example would be how a light received at a specific wavelength would be interpreted. Standards examples include IEEE 802.3 (Ethernet), IEEE 802.11 (Wireless Ethernet) and Synchronous optical networking (SONET) among others.

The Data Link Layer (Layer 2)

Layer 2 of the OSI model is named the data link layer and is responsible for link establishment and termination, frame traffic control, sequencing, acknowledgement, error checking, and media access management. The most familiar standards used at the data link layer include IEEE 802.3 (Ethernet) Media Access Control (MAC) and Logical Link Control (LLC) sublayers. The LLC acts as an interface between the physical layer and the MAC sublayer, and the MAC sublayer provides the ability for multiple terminals (computers) to communicate over the same physical medium. Other standards examples include Asynchronous Transfer Mode (ATM), High-Level Data Link Control (HDLC), Frame Relay and the Point to Point Protocol (PPP).

The Network Layer (Layer 3)

Layer 3 of the OSI model is named the network layer and is where routing of network traffic begins. The network layer not only makes the traffic routing decisions but also provides traffic control, fragmentation, and logical addressing (Internet Protocol (IP) addresses). The most common network layer protocol is IP, but other commonly used protocols include the Internet Control Message Protocol (ICMP) and Internet Group Message Protocol (IGMP).

The Transport Layer (Layer 4)

Layer 4 of the OSI model is named the transport layer and is responsible for message segmentation, acknowledgement, traffic control, and session multiplexing. The transport layer also has the ability to perform error detection and correction (resends), message reordering to ensure message sequence, and reliable message channel depending on the specific transport layer protocol used. The most common of the used transport layer protocols include the Transport Control Protocol (TCP) and User Datagram Protocol (UDP).

The Session Layer (Layer 5)

Layer 5 of the OSI model is named the session layer and is responsible for session establishment, maintenance and termination (the ability to have multiple devices use a single application from multiple locations). Common examples of session layer protocols are Named Pipes and NetBIOS.

The Presentation Layer (Layer 6)

Layer 6 of the OSI model is named the presentation layer and is responsible for character code translation (i.e. ASCII vs. EBCDIC vs. Unicode), data conversion, compression, and encryption. Some common examples include Multipurpose Internet Mail Extensions (MIME), Transport Layer Security (TLS) and Secure Sockets Layer (SSL).

The Application Layer (Layer 7)

Layer 7 of the OSI model is named the application layer and is responsible for a number of different things depending on the application; some of these things include resource sharing, remote file access, remote printer access, network management, and electronic messaging (email). There are a large number of application layer protocols that are familiar to the common Internet user, including the File Transfer Protocol (FTP), Domain Name Service (DNS), Hypertext Transfer Protocol (HTTP) and Simple Mail Transfer Protocol (SMTP).

TCP/IP Model

Like the OSI model, the TCP/IP model is layered and is used in the same fashion as the OSI model but with fewer layers. As the modern Internet and most communications use the Internet Protocol (IP), the TCP/IP model is technically more in line with modern network implementations. As stated before, the layers within the TCP/IP model are considered less rigid then that of the OSI model, which basically means that many protocols implemented can be considered in grey areas between one area and another. The TCP/IP protocol suite (often referred to as the TCP/IP protocol) contains the same protocols referenced in the earlier OSI model sections. Figure 2 below shows a representation of the TCP/IP model:

Figure 2 TCP/IP Model

The Link Layer

The link layer is the lowest layer of the TCP/IP model; it is also referred to in some texts as the network interface layer. The link layer combines the physical and data link layer functions into a single layer. This includes frame physical network functions like modulation, line coding and bit synchronization, frame synchronization and error detection, and LLC and MAC sublayer functions. Common protocols include the Address Resolution Protocol (ARP), Neighbor Discovery Protocol (NDP), IEEE 802.3 and IEEE 802.11.

The Internet Layer

The Internet layer is the next layer up from the link layer and is associated with the network layer of the OSI model. Functions include traffic routing, traffic control, fragmentation, and logical addressing. Common protocols include IP, ICMP and IGMP.

The Transport Layer

The Transport layer is the next layer and is typically related directly with the same named layer in the OSI model. Functions include message segmentation, acknowledgement, traffic control, session multiplexing, error detection and correction (resends), and message reordering. Common protocols include the Transport Control Protocol (TCP) and User Datagram Protocol (UDP).

The Application Layer

The Application layer is the highest layer in the TCP/IP model and is related to the session, presentation and application layers of the OSI model. The application layer of the TCP/IP model is used to handle all process-to-process communication functions; these functions were carried out by multiple different layers when referencing the OSI model. There are a number of different functions which are carried out by this layer, including session establishment, maintenance and termination, character code translations, data conversion, compression and encryption, remote access, network management and electronic messaging to name a few. Common protocols include Named Pipes, NetBIOS, MIME, TLS, SSL, FTP, DNS, HTTP, SMTP and many others.

Summary

The confusion that exists between these two different models is common for new network engineers, as many have at least some familiarity with TCP/IP but have never heard of OSI. It should be clear that these are strictly models and should be considered separate entities from each other when being taught. Hopefully this article is able to make clear the functions that are considered applicable to each layer within each model.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020