Home > Articles > Programming > C/C++

C++ GUI Programming with Qt4: Item View Classes

This chapter details using the item view convenience classes and predefined models as well as implementing custom models and custom delegates.
This chapter is from the book

10. Item View Classes

  • Using the Item View Convenience Classes
  • Using Predefined Models
  • Implementing Custom Models
  • Implementing Custom Delegates

Many applications let the user search, view, and edit individual items that belong to a data set. The data might be held in files or accessed from a database or a network server. The standard approach to dealing with data sets such as this is to use Qt's item view classes.

In earlier versions of Qt, the item view widgets were populated with the entire contents of a data set; the users would perform all their searches and edits on the data held in the widget, and at some point the changes would be written back to the data source. Although simple to understand and use, this approach doesn't scale very well to large data sets and doesn't lend itself to situations where we want to display the same data set in two or more different widgets.

The Smalltalk language popularized a flexible approach to visualizing large data sets:model–view–controller (MVC). In the MVC approach, the model represents the data set and is responsible for both fetching the data that is needed for viewing and saving back any changes. Each type of data set has its own model, but the API that the models provide to the views is uniform regardless of the underlying data set. The view presents the data to the user. With any large data set only a limited amount of data will be visible at any one time, so that is the only data that the view asks for. The controller mediates between the user and the view, converting user actions into requests to navigate or edit data, which the view then transmits to the model as necessary.

Qt provides a model/view architecture inspired by the MVC approach, as Figure 10.1 illustrates. In Qt, the model behaves the same as it does for classic MVC. But instead of a controller, Qt uses a slightly different abstraction: the delegate. The delegate is used to provide fine control over how items are rendered and edited. Qt provides a default delegate for every type of view. This is sufficient for most applications, so we usually don't need to care about it.


Figure 10.1 Qt's model/view architecture

Using Qt's model/view architecture, we can use models that fetch only the data that is actually needed for display in the view, making it possible to handle very large data sets without compromising performance. And by registering a model with two or more views, we can give the user the opportunity to view and interact with the data in different ways, with little overhead. Qt automatically keeps multiple views in sync, reflecting changes to one in all the others, as illustrated in Figure 10.2. An additional benefit of the model/view architecture is that if we decide to change how the underlying data set is stored, we just need to change the model; the views will continue to behave correctly.


Figure 10.2 One model can serve multiple views

In many situations, we need to present only relatively small numbers of items to the user. In these common cases, we can use Qt's convenience item view classes (QListWidget, QTableWidget, and QTreeWidget) and populate them with items directly. These classes behave in a similar way to the item view classes provided by earlier versions of Qt. They store their data in "items" (e.g., a QTableWidget contains QTableWidgetItems). Internally, the convenience classes use custom models that make the items visible to the views.

For large data sets, duplicating the data is often not an option. In these cases, we can use Qt's views (QListView, QTableView, and QTreeView) in conjunction with a data model, which can be a custom model or one of Qt's predefined models. For example, if the data set is held in a database, we can combine a QTableView with a QSqlTableModel.

Using the Item View Convenience Classes

Using Qt's item view convenience subclasses is usually simpler than defining a custom model and is appropriate when we don't need the benefits of separating the model and the view. We used this technique in Chapter 4 when we subclassed QTableWidget and QTableWidgetItem to implement spreadsheet functionality.

In this section, we will show how to use the convenience item view subclasses to display items. The first example shows a read-only QListWidget (Figure 10.3), the second example shows an editable QTableWidget (Figure 10.4), and the third example shows a read-only QTreeWidget (Figure 10.5).


Figure 10.3 The Flowchart Symbol Picker application


Figure 10.4 The Coordinate Setter application


Figure 10.5 The Settings Viewer application

We begin with a simple dialog that lets the user pick a flowchart symbol from a list. Each item consists of an icon, a text, and a unique ID.

Let's start with an extract from the dialog's header file:

class FlowChartSymbolPicker : public QDialog

    FlowChartSymbolPicker(const QMap<int, QString> &symbolMap,
                          QWidget *parent = 0);

    int selectedId() const { return id; }
    void done(int result);

When we construct the dialog, we must pass it a QMap<int, QString>, and after it has executed we can retrieve the chosen ID (or -1 if the user didn't select any item) by calling selectedId().

        const QMap<int, QString> &symbolMap, QWidget *parent)
    : QDialog(parent)
    id = -1;

    listWidget = new QListWidget;
    listWidget->setIconSize(QSize(60, 60));

    QMapIterator<int, QString> i(symbolMap);
    while (i.hasNext()) {
        QListWidgetItem *item = new QListWidgetItem(i.value(),
        item->setData(Qt::UserRole, i.key());

We initialize id (the last selected ID) to -1. Next we construct a QListWidget, a convenience item view widget. We iterate over each item in the flowchart symbol map and create a QListWidgetItem to represent each one. The QListWidgetItem constructor takes a QString that represents the text to display, followed by the parent QListWidget.

Then we set the item's icon and we call setData() to store our arbitrary ID in the QListWidgetItem. The iconForSymbol() private function returns a QIcon for a given symbol name.

QListWidgetItems have several roles, each of which has an associated QVariant. The most common roles are Qt::DisplayRole, Qt::EditRole, and Qt::IconRole, and for these there are convenience setter and getter functions (setText(), setIcon()), but there are several other roles. We can also define custom roles by specifying a numeric value of Qt::UserRole or higher. In our example, we use Qt::UserRole to store each item's ID.

The omitted part of the constructor is concerned with creating the buttons, laying out the widgets, and setting the window's title.

void FlowChartSymbolPicker::done(int result)
    id = -1;
    if (result == QDialog::Accepted) {
        QListWidgetItem *item = listWidget->currentItem();
        if (item)
            id = item->data(Qt::UserRole).toInt();

The done() function is reimplemented from QDialog. It is called when the user clicks OK or Cancel. If the user clicked OK, we retrieve the relevant item and extract the ID using the data() function. If we were interested in the item's text, we could retrieve it by calling item->data(Qt::DisplayRole).toString() or, more conveniently, item->text().

By default, QListWidget is read-only. If we wanted the user to edit the items, we could set the view's edit triggers using QAbstractItemView::setEditTriggers(); for example, a setting of QAbstractItemView::AnyKeyPressed means that the user can begin editing an item just by starting to type. Alternatively, we could provide an Edit button (and perhaps Add and Delete buttons) and use signal–slot connections so that we can handle the editing operations programmatically.

Now that we have seen how to use a convenience item view class for viewing and selecting data, we will look at an example in which we can edit data. Again we are using a dialog, this time one that presents a set of (x, y) coordinates that the user can edit.

As with the previous example, we will focus on the item view relevant code, starting with the constructor.

CoordinateSetter::CoordinateSetter(QList<QPointF> *coords,
                                   QWidget *parent)
    : QDialog(parent)
    coordinates = coords;

    tableWidget = new QTableWidget(0, 2);
            QStringList() << tr("X") << tr("Y"));

    for (int row = 0; row < coordinates->count(); ++row) {
        QPointF point = coordinates->at(row);
        tableWidget->item(row, 0)->setText(QString::number(point.x()));
        tableWidget->item(row, 1)->setText(QString::number(point.y()));

The QTableWidget constructor takes the initial number of table rows and columns to display. Every item in a QTableWidget is represented by a QTableWidgetItem, including horizontal and vertical header items. The setHorizontalHeaderLabels() function sets the text for each horizontal table widget item to the corresponding text in the string list it is passed. By default, QTableWidget provides a vertical header with rows labeled from 1, which is exactly what we want, so we don't need to set the vertical header labels manually.

Once we have created the column labels, we iterate through the coordinate data that was passed in. For every (x, y) pair, we add a new row (using the private function addRow()) and set the text in each of the row's columns appropriately.

By default, QTableWidget allows editing. The user can edit any cell in the table by navigating to it and then either pressing F2 or simply by typing. All changes the user has made in the view will be automatically reflected into the QTableWidgetItems. To prevent editing, we can call setEditTriggers(QAbstractItemView::NoEditTriggers).

void CoordinateSetter::addRow()
    int row = tableWidget->rowCount();


    QTableWidgetItem *item0 = new QTableWidgetItem;
    item0->setTextAlignment(Qt::AlignRight | Qt::AlignVCenter);
    tableWidget->setItem(row, 0, item0);

    QTableWidgetItem *item1 = new QTableWidgetItem;
    item1->setTextAlignment(Qt::AlignRight | Qt::AlignVCenter);
    tableWidget->setItem(row, 1, item1);


The addRow() slot is invoked when the user clicks the Add Row button; it is also used in the constructor. We append a new row using QTableWidget::insertRow(). Then we create two QTableWidgetItems and add them to the table using QTableWidget::setItem(), which takes a row and a column in addition to the item. Finally, we set the current item so that the user can start editing the new row's first item.

void CoordinateSetter::done(int result)
    if (result == QDialog::Accepted) {
        for (int row = 0; row < tableWidget->rowCount(); ++row) {
            double x = tableWidget->item(row, 0)->text().toDouble();
            double y = tableWidget->item(row, 1)->text().toDouble();
            coordinates->append(QPointF(x, y));

When the user clicks OK, we clear the coordinates that were passed in to the dialog, and create a new set based on the coordinates in the QTableWidget's items. For our third and final example of Qt's convenience item view widgets, we will look at some snippets from an application that shows Qt application settings using a QTreeWidget. Read-only is the default for QTreeWidget.

Here's an extract from the constructor:

SettingsViewer::SettingsViewer(QWidget *parent)
    : QDialog(parent)
    organization = "Trolltech";
    application = "Designer";

    treeWidget = new QTreeWidget;
            QStringList() << tr("Key") << tr("Value"));
    treeWidget->header()->setResizeMode(0, QHeaderView::Stretch);
    treeWidget->header()->setResizeMode(1, QHeaderView::Stretch);
    setWindowTitle(tr("Settings Viewer"));

To access an application's settings, a QSettings object must be created with the organization's name and the application's name as parameters. We set default names ("Designer" by "Trolltech") and then construct a new QTreeWidget. The tree widget's header view governs the sizes of the tree's columns. We set both columns' resize mode to Stretch. This tells the header view to always make the columns fill the available space. In this mode, the columns cannot be resized by the user or programmatically. At the end of the constructor, we call the readSettings() function to populate the tree widget.

void SettingsViewer::readSettings()
    QSettings settings(organization, application);

    addChildSettings(settings, 0, "");

    setWindowTitle(tr("Settings Viewer - %1 by %2")

Application settings are stored in a hierarchy of keys and values. The addChildSettings() private function takes a settings object, a parent QTreeWidgetItem, and the current "group". A group is the QSettings equivalent of a file system directory. The addChildSettings() function can call itself recursively to traverse an arbitrary tree structure. The initial call from the readSettings() function passes a null pointer as the parent item to represent the root.

void SettingsViewer::addChildSettings(QSettings &settings,
        QTreeWidgetItem *parent, const QString &group)
    if (!parent)
        parent = treeWidget->invisibleRootItem();
    QTreeWidgetItem *item;


    foreach (QString key, settings.childKeys()) {
        item = new QTreeWidgetItem(parent);
        item->setText(0, key);
        item->setText(1, settings.value(key).toString());
    foreach (QString group, settings.childGroups()) {
        item = new QTreeWidgetItem(parent);
        item->setText(0, group);
        addChildSettings(settings, item, group);

The addChildSettings() function is used to create all the QTreeWidgetItems. It iterates over all the keys at the current level in the settings hierarchy and creates one QTableWidgetItem per key. If a null pointer was passed as the parent item, we create the item as a child of QTreeWidget::invisibleRootItem(), making it a top-level item. The first column is set to the name of the key and the second column to the corresponding value.

Next, the function iterates over every group at the current level. For each group, a new QTreeWidgetItem is created with its first column set to the group's name. The function then calls itself recursively with the group item as the parent to populate the QTreeWidget with the group's child items.

The item view widgets shown in this section allow us to use a style of programming that is very similar to that used in earlier versions of Qt: reading an entire data set into an item view widget, using item objects to represent data elements, and (if the items are editable) writing back to the data source. In the following sections, we will go beyond this simple approach and take full advantage of Qt's model/view architecture.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020