Home > Articles > Security > Network Security

Secret Bits: How Codes Became Unbreakable

As encryption becomes as ordinary a tool for personal messages as it already is for commercial transactions, will the benefits to personal privacy, free expression, and human liberty outweigh the costs to law enforcement and national intelligence, whose capacity to eavesdrop and wiretap will be at an end?
This chapter is from the book

Encryption in the Hands of Terrorists, and Everyone Else

September 13, 2001. Fires were still smoldering in the wreckage of the World Trade Center when Judd Gregg of New Hampshire rose to tell the Senate what had to happen. He recalled the warnings issued by the FBI years before the country had been attacked: the FBI's most serious problem was "the encryption capability of the people who have an intention to hurt America." "It used to be," the senator went on, "that we had the capability to break most codes because of our sophistication." No more. "The technology has outstripped the code breakers," he warned. Even civil libertarian cryptographer Phil Zimmermann, whose encryption software appeared on the Internet in 1991 for use by human rights workers world-wide, agreed that the terrorists were probably encoding their messages. "I just assumed," he said, "somebody planning something so diabolical would want to hide their activities using encryption."

Encryption is the art of encoding messages so they can't be understood by eavesdroppers or adversaries into whose hands the messages might fall. De-scrambling an encrypted message requires knowing the sequence of symbols—the "key"—that was used to encrypt it. An encrypted message may be visible to the world, but without the key, it may as well be hidden in a locked box. Without the key—exactly the right key—the contents of the box, or the message, remains secret.

What was needed, Senator Gregg asserted, was "the cooperation of the community that is building the software, producing the software, and building the equipment that creates the encoding technology"—cooperation, that is, enforced by legislation. The makers of encryption software would have to enable the government to bypass the locks and retrieve the decrypted messages. And what about encryption programs written abroad, which could be shared around the world in the blink of an eye, as Zimmermann's had been? The U.S. should use "the market of the United States as leverage" in getting foreign manufacturers to follow U.S. requirements for "back doors" that could be used by the U.S. government.

By September 27, Gregg's legislation was beginning to take shape. The keys used to encrypt messages would be held in escrow by the government under tight security. There would be a "quasi-judicial entity," appointed by the Supreme Court, which would decide when law enforcement had made its case for release of the keys. Civil libertarians squawked, and doubts were raised as to whether the key escrow idea could actually work. No matter, opined the Senator in late September. "Nothing's ever perfect. If you don't try, you're never going to accomplish it. If you do try, you've at least got some opportunity for accomplishing it."

Abruptly, three weeks later, Senator Gregg dropped his legislative plan. "We are not working on an encryption bill and have no intention to," said the Senator's spokesman on October 17.

On October 24, 2001, Congress passed the USA PATRIOT Act, which gave the FBI sweeping new powers to combat terrorism. But the PATRIOT Act does not mention encryption. U.S. authorities have made no serious attempt to legislate control over cryptographic software since Gregg's proposal.

Why Not Regulate Encryption?

Throughout the 1990s, the FBI had made control of encryption its top legislative priority. Senator Gregg's proposal was a milder form of a bill, drafted by the FBI and reported out favorably by the House Select Committee on Intelligence in 1997, which would have mandated a five-year prison sentence for selling encryption products unless they enabled immediate decryption by authorized officials.

How could regulatory measures that law enforcement deemed critical in 1997 for fighting terrorism drop off the legislative agenda four years later, in the aftermath of the worst terrorist attack ever suffered by the United States of America?

No technological breakthrough in cryptography in the fall of 2001 had legislative significance. There also weren't any relevant diplomatic breakthroughs. No other circumstances conspired to make the use of encryption by terrorists and criminals an unimportant problem. It was just that something else about encryption had become accepted as more important: the explosion of commercial transactions over the Internet. Congress suddenly realized that it had to allow banks and their customers to use encryption tools, as well as airlines and their customers, and eBay and Amazon and their customers. Anyone using the Internet for commerce needed the protection that encryption provided. Very suddenly, there were millions of such people, so many that the entire U.S. and world economy depended on public confidence in the security of electronic transactions.

The tension between enabling secure conduct of electronic commerce and preventing secret communication among outlaws had been in the air for a decade. Senator Gregg was but the last of the voices calling for restrictions on encryption. The National Research Council had issued a report of nearly 700 pages in 1996 that weighed the alternatives. The report concluded that on balance, efforts to control encryption would be ineffective, and that their costs would exceed any imaginable benefit. The intelligence and defense establishment was not persuaded. FBI Director Louis Freeh testified before Congress in 1997 that "Law enforcement is in unanimous agreement that the widespread use of robust non-key recovery [i.e., non-escrowed] encryption ultimately will devastate our ability to fight crime and prevent terrorism."

Yet only four years later, even in the face of the September 11th attack, the needs of commerce admitted no alternative to widespread dissemination of encryption software to every business in the country, as well as to every home computer from which a commercial transaction might take place. In 1997, average citizens, including elected officials, might never have bought anything online. Congress members' families might not have been regular computer users. By 2001, all that had changed—the digital explosion was happening. Computers had become consumer appliances, Internet connections were common in American homes—and awareness of electronic fraud had become widespread. Consumers did not want their credit card numbers, birthdates, and Social Security numbers exposed on the Internet.

Why is encryption so important to Internet communications that Congress was willing to risk terrorists using encryption, so that American businesses and consumers could use it too? After all, information security is not a new need. People communicating by postal mail, for example, have reasonable assurances of privacy without any use of encryption.

The answer lies in the Internet's open architecture. Bits move through the Internet not in a continuous stream, but in discrete blocks, called packets. A packet consists of about 1500 bytes, no more (see the Appendix). Data packets are not like envelopes sent through postal mail, with an address on the outside and contents hidden. They are like postcards, with everything exposed for anyone to see. As the packets move through the Internet, they are steered on their way by computers called routers, which are located at the switching points. Every data packet gets handled at every router: stored, examined, checked, analyzed, and sent on its way. Even if all the fibers and wires could be secured, wireless networks would allow bits to be grabbed out of the air without detection.

If you send your credit card number to a store in an ordinary email, you might as well stand in Times Square and shout it at the top of your lungs. By 2001, a lot of credit card numbers were traveling as bits though glass fibers and through the air, and it was impossible to prevent snoopers from looking at them.

The way to make Internet communications secure—to make sure that no one but the intended recipient knows what is in a message—is for the sender to encrypt the information so that only the recipient can decrypt it. If that can be accomplished, then eavesdroppers along the route from sender to receiver can examine the packets all they want. All they will find is an undecipherable scramble of bits.

In a world awakening to Internet commerce, encryption could no longer be thought of as it had been from ancient times until the turn of the third millennium: as armor used by generals and diplomats to protect information critical to national security. Even in the early 1990s, the State Department demanded that an encryption researcher register as an international arms dealer. Now suddenly, encryption was less like a weapon and more like the armored cars used to transport cash on city streets, except that these armored cars were needed by everyone. Encryption was no longer a munition; it was money.

The commoditization of a critical military tool was more than a technology shift. It sparked, and continues to spark, a rethinking of fundamental notions of privacy and of the balance between security and freedom in a democratic society.

"The question," posed MIT's Ron Rivest, one of the world's leading cryptographers, during one of the many debates over encryption policy that occurred during the 1990s, "is whether people should be able to conduct private conversations, immune from government surveillance, even when that surveillance is fully authorized by a Court order." In the post-2001 atmosphere that produced the PATRIOT Act, it's far from certain that Congress would have responded to Rivest's question with a resounding "Yes." But by 2001, commercial realities had overtaken the debates.

To fit the needs of electronic commerce, encryption software had to be widely available. It had to work perfectly and quickly, with no chance of anyone cracking the codes. And there was more: Although encryption had been used for more than four millennia, no method known until the late twentieth century would have worked well enough for Internet commerce. But in 1976, two young mathematicians, operating outside the intelligence community that was the center of cryptography research, published a paper that made a reality out of a seemingly absurd scenario: Two parties work out a secret key that enables them to exchange messages securely—even if they have never met and all their messages to each other are in the open, for anyone to hear. With the invention of public-key cryptography, it became possible for every man, woman, and child to transmit credit card numbers to Amazon more securely than any general had been able to communicate military orders fifty years earlier, orders on which the fate of nations depended.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020