Home > Articles > Networking > Network Design & Architecture

This chapter is from the book

3.3 Link Capacity Adjustment Scheme

Virtual concatenation allows the flexibility of creating SONET/SDH pipes of different sizes. The Link Capacity Adjustment Scheme or LCAS [ITU-T01a] is a relatively new addition to the SONET/SDH standard. It is designed to increase or decrease the capacity of a Virtually Concatenated Group (VCG) in a hitless fashion. This capability is particularly useful in environments where dynamic adjustment of capacity is important. The LCAS mechanism can also automatically decrease the capacity if a member in a VCG experiences a failure in the network, and increase the capacity when the fault is repaired. Although autonomous addition after a failure is repaired is hitless, removal of a member due to path layer failures is not hitless. Note that a “member” here refers to a VC (SDH) or an SPE (SONET). In the descriptions below, we use the term member to denote a VC.

Note that virtual concatenation can be used without LCAS, but LCAS requires virtual concatenation. LCAS is resident in the H4 byte of the path overhead, the same byte as virtual concatenation. The H4 bytes from a 16-frame sequence make up a message for both virtual concatenation and LCAS. Virtual concatenation uses 4 of the 16 bytes for its MFI and sequence numbers. LCAS uses 7 others for its purposes, leaving 5 reserved for future development. While virtual concatenation is a simple labeling of individual STS-1s within a channel, LCAS is a two-way handshake protocol. Status messages are continuously exchanged and consequent actions taken.

From the perspective of dynamic provisioning enabled by LCAS, each VCG can be characterized by two parameters:

  • XMAX, which indicates the maximum size of the VCG and it is usually dictated by hardware and/or standardization limits

  • XPROV, which indicates the number of provisioned members in the VCG

With each completed ADD command, XPROV increases by 1, and with each completed REMOVE command XPROV decreases by 1. The relationship 0 ≤ XPROV ≤ XMAX always holds. The operation of LCAS is unidirectional. This means that in order to bidirectionally add or remove members to or from a VCG, the LCAS procedure has to be repeated twice, once in each direction. These actions are independent of each other, and they are not required to be synchronized.

The protocols behind LCAS are relatively simple. For each member in the VCG (total of XMAX), there is a state machine at the transmitter and a state machine at the receiver. The state machine at the transmitter can be in one of the following five states:

  1. IDLE: This member is not provisioned to participate in the VCG.

  2. NORM: This member is provisioned to participate in the VCG and has a good path to the receiver.

  3. DNU: This member is provisioned to participate in the VCG and has a failed path to the receiver.

  4. ADD: This member is in the process of being added to the VCG.

  5. REMOVE: This member is in the process of being deleted from the VCG.

The state machine at the receiver can be in one of the following three states:

  1. IDLE: This member is not provisioned to participate in the VCG.

  2. OK: The incoming signal for this member experiences no failure condition. Or, the receiver has received and acknowledged a request for addition of this member.

  3. FAIL: The incoming signal for this member experiences some failure condition, or an incoming request for removal of a member has been received and acknowledged.

The transmitter and the receiver communicate using control packets to ensure smooth transition from one state to another. The control packets consist of XMAX control words, one for each member of the VCG. The following control words are sent from source to the receiver in order to carry out dynamic provisioning functions. Each word is associated with a specific member (i.e., VC) in the VCG.

  • FADD: Add this member to the group.

  • FDNU: Delete this member from the group.

  • FIDLE: Indicate that this VC is currently not a member of the group.

  • FEOS: Indicate that this member has the highest sequence number in the group (EOS denotes End of Sequence).

  • FNORM: Indicate that this member is normal part of the group and does not have the highest sequence number.

The following control words are sent from the receiver to the transmitter. Each word is associated with a specific VC in the VCG.

  • RFAIL and ROK: These messages capture the status of all the VCG members at the receiver. The status of all the members is returned to the transmitter in the control packets of each member. The transmitter can, for example, read the information from member No. 1 and, if that is unavailable, the same information from member No. 2, and so on. As long as no return bandwidth is available, the transmitter uses the last received valid status.

  • RRS_ACK: This is a bit used to acknowledge the detection of renumbering of the sequence or a change in the number of VCG members. This acknowledgment is used to synchronize the transmitter and the receiver.

The following is a typical sequence for adding a member to the group. Multiple members can be added simultaneously for fast resizing.

  1. The network management system orders the source to add a new member (e.g., a VC) to the existing VCG.

  2. The source node starts sending FADD control commands in the selected member. The destination notices the FADD command and returns an ROK in the link status for the new member.

  3. The source sees the ROK, assigns the member a sequence number that is one higher than the number currently in use.

  4. At a frame boundary, the source includes the VC in the byte interleaving and sets the control command to FEOS, indicating that this VC is in use and it is the last in the sequence.

  5. The VC that previously was “EOS ” now becomes “NORM” (normal) as it is no longer the one with the highest sequence number.

The following is a typical sequence for deleting the VC with the highest sequence number (EOS) from a VCG:

  1. The network management system orders the source to delete a member from the existing VCG.

  2. The source node starts sending FIDLE control commands in the selected VC. It also sets the member with the next highest sequence number as the EOS and sends FEOS in the corresponding control word.

  3. The destination notices the FIDLE command and immediately drops the channel from the reassembly process. It also responds with RFAIL and inverts the RRS_ACK bit.

In this example, the deleted member has the highest sequence number. If this is not the case, then the other members with sequence numbers between the newly deleted member and the highest sequence number are renumbered.

LCAS and virtual concatenation add tremendous amount of flexibility to SONET and SDH. Although SONET and SDH were originally designed to transport voice traffic, advent of these new mechanisms has made it perfectly suitable for carrying more dynamic and bursty data traffic. In the next section, we discuss mechanisms for mapping packet payloads into SONET and SDH SPEs.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020