Home > Store

Network Security: Private Communication in a Public World, 3rd Edition

eBook (Watermarked)

  • Your Price: $44.79
  • List Price: $55.99
  • Includes EPUB and PDF
  • About eBook Formats
  • This eBook includes the following formats, accessible from your Account page after purchase:

    ePub EPUB The open industry format known for its reflowable content and usability on supported mobile devices.

    Adobe Reader PDF The popular standard, used most often with the free Adobe® Reader® software.

    This eBook requires no passwords or activation to read. We customize your eBook by discreetly watermarking it with your name, making it uniquely yours.

Also available in other formats.

Register your product to gain access to bonus material or receive a coupon.


Additional Information

Download the sample pages (includes Chapter 1)


  • Copyright 2023
  • Dimensions: 7-3/8" x 9-1/8"
  • Pages: 544
  • Edition: 3rd
  • eBook (Watermarked)
  • ISBN-10: 0-13-664358-2
  • ISBN-13: 978-0-13-664358-6

The classic guide to cryptography and network security now fully updated!

Alice and Bob are back!

Widely regarded as the most comprehensive yet comprehensible guide to network security and cryptography, the previous editions of Network Security received critical acclaim for lucid and witty explanations of the inner workings of cryptography and network security protocols. In this edition, the authors have significantly updated and revised the previous content, and added new topics that have become important.

This book explains sophisticated concepts in a friendly and intuitive manner. For protocol standards, it explains the various constraints and committee decisions that led to the current designs. For cryptographic algorithms, it explains the intuition behind the designs, as well as the types of attacks the algorithms are designed to avoid. It explains implementation techniques that can cause vulnerabilities even if the cryptography itself is sound. Homework problems deepen your understanding of concepts and technologies, and an updated glossary demystifies the field's jargon. Network Security, Third Edition will appeal to a wide range of professionals, from those who design and evaluate security systems to system administrators and programmers who want a better understanding of this important field. It can also be used as a textbook at the graduate or advanced undergraduate level.

Coverage includes

  • Network security protocol and cryptography basics
  • Design considerations and techniques for secret key and hash algorithms (AES, DES, SHA-1, SHA-2, SHA-3)
  • First-generation public key algorithms (RSA, Diffie-Hellman, ECC)
  • How quantum computers work, and why they threaten the first-generation public key algorithms
  • Quantum-safe public key algorithms: how they are constructed, and optimizations to make them practical
  • Multi-factor authentication of people
  • Real-time communication (SSL/TLS, SSH, IPsec) 
  • New applications (electronic money, blockchains)
  • New cryptographic techniques (homomorphic encryption, secure multiparty computation)

Sample Content

Sample Pages

Download the sample pages (includes Chapter 1)

Table of Contents

Chapter 1 Introduction

1.1 Opinions, Products

1.2 Roadmap to the Book

1.3 Terminology

1.4 Notation

1.5 Cryptographically Protected Sessions

1.6 Active and Passive Attacks

1.7 Legal Issues

    1.7.1 Patents

    1.7.2 Government Regulations

1.8 Some Network Basics

    1.8.1 Network Layers

    1.8.2 TCP and UDP Ports

    1.8.3 DNS (Domain Name System)

    1.8.4 HTTP and URLs

    1.8.5 Web Cookies

1.9 Names for Humans

1.10 Authentication and Authorization

    1.10.1 ACL (Access Control List)

    1.10.2 Central Administration/Capabilities

    1.10.3 Groups

    1.10.4 Cross-Organizational and Nested Groups

    1.10.5 Roles

1.11 Malware: Viruses, Worms, Trojan Horses

    1.11.1 Where Does Malware Come From?

    1.11.2 Virus Checkers

1.12 Security Gateway

    1.12.1 Firewall

    1.12.2 Application-Level Gateway/Proxy

    1.12.3 Secure Tunnels

    1.12.4 Why Firewalls Don't Work

1.13 Denial-of-Service (DoS) Attacks

1.14 NAT (Network Address Translation)

    1.14.1 Summary

Chapter 2 Introduction to Cryptography

2.1 Introduction

    2.1.1 The Fundamental Tenet of Cryptography

    2.1.2 Keys

    2.1.3 Computational Difficulty

    2.1.4 To Publish or Not to Publish

    2.1.5 Earliest Encryption

    2.1.6 One-Time Pad (OTP)

2.2 Secret Key Cryptography

    2.2.1 Transmitting Over an Insecure Channel

    2.2.2 Secure Storage on Insecure Media

    2.2.3 Authentication

    2.2.4 Integrity Check

2.3 Public Key Cryptography

    2.3.1 Transmitting Over an Insecure Channel

    2.3.2 Secure Storage on Insecure Media

    2.3.3 Authentication

    2.3.4 Digital Signatures

2.4 Hash Algorithms

    2.4.1 Password Hashing

    2.4.2 Message Integrity

    2.4.3 Message Fingerprint

    2.4.4 Efficient Digital Signatures

2.5 Breaking an Encryption Scheme

    2.5.1 Ciphertext Only

    2.5.2 Known Plaintext

    2.5.3 Chosen Plaintext

    2.5.4 Chosen Ciphertext

    2.5.5 Side-Channel Attacks

2.6 Random Numbers

    2.6.1 Gathering Entropy

    2.6.2 Generating Random Seeds

    2.6.3 Calculating a Pseudorandom Stream from the Seed

    2.6.4 Periodic Reseeding

    2.6.5 Types of Random Numbers

    2.6.6 Noteworthy Mistakes

2.7 Numbers

    2.7.1 Finite Fields

    2.7.2 Exponentiation

    2.7.3 Avoiding a Side-Channel Attack

    2.7.4 Types of Elements used in Cryptography

    2.7.5 Euclidean Algorithm

    2.7.6 Chinese Remainder Theorem

2.8 Homework

Chapter 3 Secret Key Cryptography

3.1 Introduction

3.2 Generic Block Cipher Issues

    3.2.1 Blocksize, Keysize

    3.2.2 Completely General Mapping

    3.2.3 Looking Random

3.3 Constructing a Practical Block Cipher

    3.3.1 Per-Round Keys

    3.3.2 S-boxes and Bit Shuffles

    3.3.3 Feistel Ciphers

3.4 Choosing Constants

3.5 Data Encryption Standard (DES)

    3.5.1 DES Overview

    3.5.2 The Mangler Function

    3.5.3 Undesirable Symmetries

    3.5.4 What's So Special About DES?

3.6 3DES (Multiple Encryption DES)

    3.6.1 How Many Encryptions? Encrypting Twice with the Same Key Encrypting Twice with Two Keys Triple Encryption with Only Two Keys

3.6.2 Why EDE Rather Than EEE?

3.7 Advanced Encryption Standard (AES)

    3.7.1 Origins of AES

    3.7.2 Broad Overview

    3.7.3 AES Overview

    3.7.4 Key Expansion

    3.7.5 Inverse Rounds

    3.7.6 Software Implementations of AES

3.8 RC4

3.9 Homework

Chapter 4 Modes of Operation

4.1 Introduction

4.2 Encrypting a Large Message

    4.2.1 ECB (Electronic Code Book)

    4.2.2 CBC (Cipher Block Chaining) Randomized ECB CBC CBC ThreatModifying Ciphertext Blocks

    4.2.3 CTR (Counter Mode) Choosing IVs for CTR Mode

    4.2.4 XEX (XOR Encrypt XOR)

    4.2.5 XTS (XEX with Ciphertext Stealing)

4.3 Generating MACs

    4.3.1 CBC-MAC CBC Forgery Attack

    4.3.2 CMAC

    4.3.3 GMAC GHASH Transforming GHASH into GMAC

4.4 Ensuring Privacy and Integrity Together

    4.4.1 CCM (Counter with CBC-MAC)

    4.4.2 GCM (Galois/Counter Mode)

4.5 Performance Issues

4.6 Homework

Chapter 5 Cryptographic Hashes

5.1 Introduction

5.2 The Birthday Problem

5.3 A Brief History of Hash Functions

5.4 Nifty Things to Do with a Hash

    5.4.1 Digital Signatures

    5.4.2 Password Database

    5.4.3 Secure Shorthand of Larger Piece of Data

    5.4.4 Hash Chains

    5.4.5 Blockchain

    5.4.6 Puzzles

    5.4.7 Bit Commitment

    5.4.8 Hash Trees

    5.4.9 Authentication

    5.4.10 Computing a MAC with a Hash

    5.4.11 HMAC

    5.4.12 Encryption with a Secret and a Hash Algorithm

5.5 Creating a Hash Using a Block Cipher

5.6 Construction of Hash Functions

    5.6.1 Construction of MD4, MD5, SHA-1 and SHA-2

    5.6.2 Construction of SHA-3

5.7 Padding

    5.7.1 MD4, MD5, SHA-1, and SHA2-256 Message Padding

    5.7.2 SHA-3 Padding Rule

5.8 The Internal Encryption Algorithms

    5.8.1 SHA-1 Internal Encryption Algorithm

    5.8.2 SHA-2 Internal Encryption Algorithm

5.9 SHA-3 f Function (Also Known as KECCAK-f)

5.10 Homework

Chapter 6 First-Generation Public Key Algorithms

6.1 Introduction

6.2 Modular Arithmetic

    6.2.1 Modular Addition

    6.2.2 Modular Multiplication

    6.2.3 Modular Exponentiation

    6.2.4 Fermat's Theorem and Euler's Theorem

6.3 RSA

    6.3.1 RSA Algorithm

    6.3.2 Why Does RSA Work?

    6.3.3 Why Is RSA Secure?

    6.3.4 How Efficient Are the RSA Operations? Exponentiating with Big Numbers Generating RSA Keys Why a Non-Prime Has Multiple Square Roots of One Having a Small Constant e Optimizing RSA Private Key Operations

    6.3.5 Arcane RSA Threats Smooth Numbers The Cube Root Problem

    6.3.6 Public-Key Cryptography Standard (PKCS) Encryption The Million-Message Attack Signing

6.4 Diffie-Hellman

    6.4.1 MITM (Meddler-in-the-Middle) Attack

    6.4.2 Defenses Against MITM Attack

    6.4.3 Safe Primes and the Small-Subgroup Attack

    6.4.4 ElGamal Signatures

6.5 Digital Signature Algorithm (DSA)

    6.5.1 The DSA Algorithm

    6.5.2 Why Is This Secure?

    6.5.3 Per-Message Secret Number

6.6 How Secure Are RSA and Diffie-Hellman?

6.7 Elliptic Curve Cryptography (ECC)

    6.7.1 Elliptic Curve Diffie-Hellman (ECDH)

    6.7.2 Elliptic Curve Digital Signature Algorithm (ECDSA)

6.8 Homework

Chapter 7 Quantum Computing

7.1 What Is a Quantum Computer?

    7.1.1 A Preview of the Conclusions

    7.1.2 First, What Is a Classical Computer?

    7.1.3 Qubits and Superposition Example of a Qubit Multi-Qubit States and Entanglement

    7.1.4 States and Gates as Vectors and Matrices

    7.1.5 Becoming Superposed and Entangled

    7.1.6 Linearity No Cloning Theorem

    7.1.7 Operating on Entangled Qubits

    7.1.8 Unitarity

    7.1.9 Doing Irreversible Operations by Measurement

    7.1.10 Making Irreversible Classical Operations Reversible

    7.1.11 Universal Gate Sets

7.2 Grover's Algorithm

    7.2.1 Geometric Description

    7.2.2 How to Negate the Amplitude of |k

    7.2.3 How to Reflect All the Amplitudes Across the Mean

    7.2.4 Parallelizing Grover's Algorithm

7.3 Shor's Algorithm

    7.3.1 Why Exponentiation mod n Is a Periodic Function

    7.3.2 How Finding the Period of ax mod n Lets You Factor n

    7.3.3 Overview of Shor's Algorithm

    7.3.4 Converting to the Frequency GraphIntroduction

    7.3.5 The Mechanics of Converting to the Frequency Graph

    7.3.6 Calculating the Period

    7.3.7 Quantum Fourier Transform

7.4 Quantum Key Distribution (QKD)

    7.4.1 Why It's Sometimes Called Quantum Encryption

    7.4.2 Is Quantum Key Distribution Important?

7.5 How Hard Are Quantum Computers to Build?

7.6 Quantum Error Correction

7.7 Homework

Chapter 8 Post-Quantum Cryptography

8.1 Signature and/or Encryption Schemes

    8.1.1 NIST Criteria for Security Levels

    8.1.2 Authentication

    8.1.3 Defense Against Dishonest Ciphertext

8.2 Hash-based Signatures

    8.2.1 Simplest Scheme Signing a Single Bit

    8.2.2 Signing an Arbitrary-sized Message

    8.2.3 Signing Lots of Messages

    8.2.4 Deterministic Tree Generation

    8.2.5 Short Hashes

    8.2.6 Hash Chains

    8.2.7 Standardized Schemes Stateless Schemes

8.3 Lattice-Based Cryptography

    8.3.1 A Lattice Problem

    8.3.2 Optimization: Matrices with Structure

    8.3.3 NTRU-Encryption Family of Lattice Encryption Schemes Bob Computes a (Public, Private) Key Pair How Bob Decrypts to Find m How Does this Relate to Lattices?

    8.3.4 Lattice-Based Signatures Basic Idea Insecure Scheme Fixing the Scheme

    8.3.5 Learning with Errors (LWE) LWE Optimizations LWE-based NIST Submissions

8.4 Code-based Schemes

    8.4.1 Non-cryptographic Error-correcting Codes Invention Step Codeword Creation Step Misfortune Step Diagnosis Step

    8.4.2 The Parity-Check Matrix

    8.4.3 Cryptographic Public Key Code-based Scheme Neiderreiter Optimization Generating a Public Key Pair Using Circulant Matrices

8.5 Multivariate Cryptography

    8.5.1 Solving Linear Equations

    8.5.2 Quadratic Polynomials

    8.5.3 Polynomial Systems

    8.5.4 Multivariate Signature Systems Multivariate Public Key Signatures

8.6 Homework

Chapter 9 Authentication of People

9.1 Password-based Authentication

    9.1.1 Challenge-Response Based on Password

    9.1.2 Verifying Passwords

9.2 Address-based Authentication

    9.2.1 Network Address Impersonation

9.3 Biometrics

9.4 Cryptographic Authentication Protocols

9.5 Who Is Being Authenticated?

9.6 Passwords as Cryptographic Keys

9.7 On-Line Password Guessing

9.8 Off-Line Password Guessing

9.9 Using the Same Password in Multiple Places

9.10 Requiring Frequent Password Changes

9.11 Tricking Users into Divulging Passwords

9.12 Lamport's Hash

9.13 Password Managers

9.14 Web Cookies

9.15 Identity Providers (IDPs)

9.16 Authentication Tokens

    9.16.1 Disconnected Tokens

    9.16.2 Public Key Tokens

9.17 Strong Password Protocols

    9.17.1 Subtle Details

    9.17.2 Augmented Strong Password Protocols

    9.17.3 SRP (Secure Remote Password)

9.18 Credentials Download Protocols

9.19 Homework

Chapter 10 Trusted Intermediaries

10.1 Introduction

10.2 Functional Comparison

10.3 Kerberos

    10.3.1 KDC Introduces Alice to Bob

    10.3.2 Alice Contacts Bob

    10.3.3 Ticket Granting Ticket (TGT)

    10.3.4 Interrealm Authentication

    10.3.5 Making Password-Guessing Attacks Difficult

    10.3.6 Double TGT Protocol

    10.3.7 Authorization Information

    10.3.8 Delegation

10.4 PKI

    10.4.1 Some Terminology

    10.4.2 Names in Certificates

10.5 Website Gets a DNS Name and Certificate

10.6 PKI Trust Models

    10.6.1 Monopoly Model

    10.6.2 Monopoly plus Registration Authorities (RAs)

    10.6.3 Delegated CAs

    10.6.4 Oligarchy

    10.6.5 Anarchy Model

    10.6.6 Name Constraints

    10.6.7 Top-Down with Name Constraints

    10.6.8 Multiple CAs for Any Namespace Node

    10.6.9 Bottom-Up with Name Constraints Functionality of Up-Links Functionality of Cross-Links

    10.6.10 Name Constraints in PKIX Certificates

10.7 Building Certificate Chains

10.8 Revocation

    10.8.1 CRL (Certificate Revocation list

    10.8.2 Online Certificate Status Protocol (OCSP)

    10.8.3 Good-Lists vs. Bad-Lists

10.9 Other Information in a PKIX Certificate

10.10 Issues with Expired Certificates

10.11 DNSSEC (DNS Security Extensions)

10.12 Homework

Chapter 11 Communication Session Establishment

11.1 One-way Authentication of Alice

    11.1.1 Timestamps vs. Challenges

    11.1.2 One-Way Authentication of Alice using a Public Key

11.2 Mutual Authentication

    11.2.1 Reflection Attack

    11.2.2 Timestamps for Mutual Authentication

11.3 Integrity/Encryption for Data

    11.3.1 Session Key Based on Shared Secret Credentials

    11.3.2 Session Key Based on Public Key Credentials

    11.3.3 Session Key Based on One-Party Public Keys

11.4 Nonce Types

11.5 Intentional MITM

11.6 Detecting MITM

11.7 What Layer?

11.8 Perfect Forward Secrecy

11.9 Preventing Forged Source Addresses

    11.9.1 Allowing Bob to Be Stateless in TCP

    11.9.2 Allowing Bob to Be Stateless in IPsec

11.10 Endpoint Identifier Hiding

11.11 Live Partner Reassurance

11.12 Arranging for Parallel Computation

11.13 Session Resumption/Multiple Sessions

11.14 Plausible Deniability

11.15 Negotiating Crypto Parameters

    11.15.1 Suites vs. à la Carte

    11.15.2 Downgrade Attack

11.16 Homework

Chapter 12 IPsec

12.1 IPsec Security Associations

    12.1.1 Security Association Database

    12.1.2 Security Policy Database

    12.1.3 IKE-SAs and Child-SAs

12.2 IKE (Internet Key Exchange Protocol)

12.3 Creating a Child-SA

12.4 AH and ESP

    12.4.1 ESP Integrity Protection

    12.4.2 Why Protect the IP Header?

    12.4.3 Tunnel, Transport Mode

    12.4.4 IPv4 Header

    12.4.5 IPv6 Header

12.5 AH (Authentication Header)

12.6 ESP (Encapsulating Security Payload)

12.7 Comparison of Encodings

12.8 Homework

Chapter 13 SSL/TLS and SSH

13.1 Using TCP

13.2 StartTLS

13.3 Functions in the TLS Handshake

13.4 TLS 1.2 (and Earlier) Basic Protocol

13.5 TLS 1.3

13.6 Session Resumption

13.7 PKI as Deployed by TLS

13.8 SSH (Secure Shell)

    13.8.1 SSH Authentication

    13.8.2 SSH Port Forwarding

13.9 Homework

Chapter 14 Electronic Mail Security

14.1 Distribution Lists

14.2 Store and Forward

14.3 Disguising Binary as Text

14.4 HTML-Formatted Email

14.5 Attachments

14.6 Non-cryptographic Security Features

    14.6.1 Spam Defenses

14.7 Malicious Links in Email

14.8 Data Loss Prevention (DLP)

14.9 Knowing Bob's Email Address

14.10 Self-Destruct, Do-Not-Forward,

14.11 Preventing Spoofing of From Field

14.12 In-Flight Encryption

14.13 End-to-End Signed and Encrypted Email

14.14 Encryption by a Server

14.15 Message Integrity

14.16 Non-Repudiation

14.17 Plausible Deniability

14.18 Message Flow Confidentiality

14.19 Anonymity

14.20 Homework

Chapter 15 Electronic Money

15.1 ECASH

15.2 Offline eCash

    15.2.1 Practical Attacks

15.3 Bitcoin

    15.3.1 Transactions

    15.3.2 Bitcoin Addresses

    15.3.3 Blockchain

    15.3.4 The Ledger

    15.3.5 Mining

    15.3.6 Blockchain Forks

    15.3.7 Why Is Bitcoin So Energy-Intensive?

    15.3.8 Integrity Checks: Proof of Work vs. Digital Signatures

    15.3.9 Concerns

15.4 Wallets for Electronic Currency

15.5 Homework

Chapter 16 Cryptographic Tricks

16.1 Secret Sharing

16.2 Blind Signature

16.3 Blind Decryption

16.4 Zero-Knowledge Proofs

    16.4.1 Graph Isomorphism ZKP

    16.4.2 Proving Knowledge of a Square Root

    16.4.3 Noninteractive ZKP

16.5 Group Signatures

    16.5.1 Trivial Group Signature Schemes Single Shared Key Group Membership Certificate Multiple Group Membership Certificates Blindly Signed Multiple Group Membership Certificates

    16.5.2 Ring Signatures

    16.5.3 DAA (Direct Anonymous Attestation)

    16.5.4 EPID (Enhanced Privacy ID)

16.6 Circuit Model

16.7 Secure Multiparty Computation (MPC)

16.8 Fully Homomorphic Encryption (FHE)

    16.8.1 Bootstrapping

    16.8.2 Easy-to-Understand Scheme

16.9 Homework

Chapter 17 Folklore

17.1 Misconceptions

17.2 Perfect Forward Secrecy

17.3 Change Encryption Keys Periodically

17.4 Don't Encrypt without Integrity Protection

17.5 Multiplexing Flows over One Secure Session

    17.5.1 The Splicing Attack

    17.5.2 Service Classes

    17.5.3 Different Cryptographic Algorithms

17.6 Using Different Secret Keys

    17.6.1 For Initiator and Responder in Handshake

    17.6.2 For Encryption and Integrity

    17.6.3 In Each Direction of a Secure Session

17.7 Using Different Public Keys

    17.7.1 Use Different Keys for Different Purposes

    17.7.2 Different Keys for Signing and Encryption

17.8 Establishing Session Keys

    17.8.1 Have Both Sides Contribute to the Master Key

    17.8.2 Don't Let One Side Determine the Key

17.9 Hash in a Constant When Hashing a Password

17.10 HMAC Rather than Simple Keyed Hash

17.11 Key Derivation

17.12 Use of Nonces in Protocols

17.13 Creating an Unpredictable Nonce

17.14 Compression

17.15 Minimal vs. Redundant Designs

17.16 Overestimate the Size of Key

17.17 Hardware Random Number Generators

17.18 Put Checksums at the End of Data

17.19 Forward Compatibility

    17.19.1 Options

    17.19.2 Version Numbers Version Number Field Must Not Move Negotiating Highest Version Supported Minor Version Number Field



M.1 Introduction

M.2 Some definitions and notation

M.3 Arithmetic

M.4 Abstract Algebra

M.5 Modular Arithmetic

    M.5.1 How Do Computers Do Arithmetic?

    M.5.2 Computing Inverses in Modular Arithmetic

        M.5.2.1 The Euclidean Algorithm

        M.5.2.2 The Chinese Remainder Theorem

    M.5.3 How Fast Can We Do Arithmetic?

M.6 Groups

M.7 Fields

    M.7.1 Polynomials

    M.7.2 Finite Fields

        M.7.2.1 What Sizes Can Finite Fields Be?

        M.7.2.2 Representing a Field

M.8 Mathematics of Rijndael

    M.8.1 A Rijndael Round

M.9 Elliptic Curve Cryptography

M.10 Rings

M.11 Linear Transformations

M.12 Matrix Arithmetic

    M.12.1 Permutations

    M.12.2 Matrix Inverses

        M.12.2.1 Gaussian Elimination

M.13 Determinants

    M.13.1 Properties of Determinants

        M.13.1.1 Adjugate of a Matrix

    M.13.2 Proof: Determinant of Product is Product of Determinants

M.14 Homework


9780136643609   TOC    8/2/2022



We've made every effort to ensure the accuracy of this book and its companion content. Any errors that have been confirmed since this book was published can be downloaded below.

Download the errata (175 KB .doc)

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020