Home > Store

Radio Frequency and Microwave Electronics Illustrated

Register your product to gain access to bonus material or receive a coupon.

Radio Frequency and Microwave Electronics Illustrated


  • Sorry, this book is no longer in print.
Not for Sale



  • New and more efficient design methodology.
    • Illustrates how to design transistor microwave amplifiers, oscillators, detectors, mixers, switches, phase shifters, and integrated circuits at RF and microwave frequencies. Ex.___

  • New technical terms—Precisely defined as they are introduced.
    • Helps to keep the subject in focus. Ex.___

  • Low-frequency electronics—Amply treated, making an easy transition to RF microwaves principles.
    • Provides workable considerations in the design of practical active circuits: amplifiers, oscillators, etc. Ex.___

  • Shift of emphasis—From rigorous mathematical solutions of Maxwell's equations to graphical and conceptual analysis.
    • Makes the process more vivid allowing for a deeper understanding of the scientific principles at work. Ex.___

  • Presentation of classical laws and principles of electricity and magnetism.
    • Often treated separately, these subjects are inter-related conceptually and graphically. Ex.___

  • Presentation of a series of scientific postulates and axioms—Lays the foundation for any physical science.
    • Provides a scientific framework for learning RF and microwaves easily and effectively. Ex.___


  • Copyright 2001
  • Dimensions: 7" x 9-1/4"
  • Pages: 864
  • Edition: 1st
  • Book
  • ISBN-10: 0-13-027958-7
  • ISBN-13: 978-0-13-027958-3

Foreword by Dr. Asad Madni, C. Eng., Fellow IEEE, Fellow IEE

Learn the fundamentals of RF and microwave electronics visually, using many thoroughly tested, practical examples

RF and microwave technology are essential throughout industry and to a world of new applications-in wireless communications, in Direct Broadcast TV, in Global Positioning System (GPS), in healthcare, medical and many other sciences. Whether you're seeking to strengthen your skills or enter the field for the first time, Radio Frequency and Microwave Electronics Illustrated is the fastest way to master every key measurement, electronic, and design principle you need to be effective. Dr. Matthew Radmanesh uses easy mathematics and a highly graphical approach with scores of examples to bring about a total comprehension of the subject. Along the way, he clearly introduces everything from wave propagation to impedance matching in transmission line circuits, microwave linear amplifiers to hard-core nonlinear active circuit design in Microwave Integrated Circuits (MICs). Coverage includes:

  • A scientific framework for learning RF and microwaves easily and effectively
  • Fundamental RF and microwave concepts and their applications
  • The characterization of two-port networks at RF and microwaves using S-parameters
  • Use of the Smith Chart to simplify analysis of complex design problems
  • Key design considerations for microwave amplifiers: stability, gain, and noise
  • Workable considerations in the design of practical active circuits: amplifiers, oscillators , frequency converters, control circuits
  • RF and Microwave Integrated Circuits (MICs)
  • Novel use of "live math" in circuit analysis and design

Dr. Radmanesh has drawn upon his many years of practical experience in the microwave industry and educational arena to introduce an exceptionally wide range of practical concepts and design methodology and techniques in the most comprehensible fashion. Applications include small-signal, narrow-band, low noise, broadband and multistage transistor amplifiers; large signal/high power amplifiers; microwave transistor oscillators, negative-resistance circuits, microwave mixers, rectifiers and detectors, switches, phase shifters and attenuators. The book is intended to provide a workable knowledge and intuitive understanding of RF and microwave electronic circuit design.

Radio Frequency and Microwave Electronics Illustrated includes a comprehensive glossary, plus appendices covering key symbols, physical constants, mathematical identities/formulas, classical laws of electricity and magnetism, Computer-Aided-Design (CAD) examples and more.

About the Web Site

The accompanying web site has an "E-Book" containing actual design examples and methodology from the text, in Microsoft Excel environment, where files can easily be manipulated with fresh data for a new design.


CD Contents

Download the CD Contents related to this title.

Sample Content

Downloadable Sample Chapter

Click here for a sample chapter for this book: 0130279587.pdf

Table of Contents

(NOTE: Each chapter begins with an Introduction.)


1. Fundamental Concepts of Science and Engineering.

Knowledge and Science: Definitions. Structure of a Science. Considerations Built into a Science. Commonality and Interrelatedness of Considerations. The Role of Mathematics. Physical Sciences: Clarification and Definition. Summary and Conclusions.

2. Fundamental Concepts in Electrical and Electronics Engineering.

Energy. Matter. Additional Considerations Implicit in Physics. The Field of Electronics. Basic Electrical Quantities, definitions of. Principle of Conservation of Energy. Maxwell's Equations. System of Units.

3. Mathematical Foundation for Understanding Circuits.

Phasor Transform. Inverse Phasor Transform. Reasons for Using Phasors. Low-Frequency Electrical Energy Concepts. Basic Circuit Elements. Series and Parallel Configurations. Concept of Impedance Revisited. Low-Frequency Electrical Laws. Fundamental Circuit Theorems. Miller's Theorem. Power Calculations in Sinusoidal Steady State. The Decibel Unit (dB).

4. DC and Low-Frequency Circuits Concepts.

Diodes. Transistors. Bipolar Junction Transistors (BJTs). Field Effect Transistors (FETs). How to Do AC Small-Signal Analysis. Summary and Conclusions.


5. Introduction to Radio Frequency and Microwave Concepts and Applications.

Reasons for Using RF/Microwaves. RF/Microwave Applications. Radio Frequency (RF) Waves. RF and Microwave (MW) Circuit Design. The Unchanging Fundamental versus the Ever-Evolving Structure. General Active-Circuit Block Diagrams. Summary.

6. RF Electronics Concepts.

RF/Microwaves versus DC or Low AC Signals. EM Spectrum. Wavelength and Frequency. Introduction to Component Basics. Resonant Circuits. Analysis of a Simple Circuit in Phasor Domain. Impedance Transformers. RF Impedance Matching. Three-Element Matching.

7. Fundamental Concepts in Wave Propagation.

Qualities of Energy. Definition of a Wave. Mathematical Form of Propagating Waves. Properties of Waves. Transmission Media. Microstrip Line.

8. Circuit Representations of Two-Port RF/Microwave Networks.

Low-Frequency Parameters. High-Frequency Parameters. Formulation of the S-Parameters. Properties of S-Parameters. Shifting Reference Planes. Transmission Matrix. Generalized Scattering Parameters. Signal Flow Graphs. Summary.


9. The Smith Chart.

A Valuable Graphical Aid: The Smith Chart. Derivation of Smith Chart. Description of Two Types of Smith Charts. Smith Chart's Circular Scales. Smith Chart's Radial Scales. The Normalized Impedance-Admittance (ZY) Smith Chart.

10. Applications Of The Smith Chart.

Distributed Circuit Applications. Lumped Element Circuit Applications. Foster's Reactance Theorem.

11. Design of Matching Networks.

Definition of Impedance Matching. Selection of a Matching Network. The Goal of Impedance Matching. Design of Matching Circuits Using Lumped Elements. Matching Network Design Using Distributed Elements.


12. Stability Considerations in Active Networks.

Stability Circles. Graphical Solution of Stability Criteria. Analytical Solution of Stability Criteria. Potentially Unstable Case.

13. Gain Considerations in Amplifiers.

Power Gain Concepts. A Special Case: Unilateral Transistor. The Mismatch Factor. Input and Output VSWR. Maximum Gain Design. Unilateral Case (Maximum Gain). Constant Gain Circles (Unilateral Case). Unilateral Figure of Merit. Bilateral Case. Summary.

14. Noise Considerations in Active Networks.

Importance of Noise. Noise Definition. Sources of Noise. Thermal Noise Analysis. Noise Model of a Noisy Resistor. Equivalent Noise Temperature. Definitions of Noise Figure. Noise Figure of Cascaded Networks. Constant Noise Figure Circles.


15. RF/Microwave Amplifiers I: Small-Signal Design.

Types of Amplifiers. Small-Signal Amplifiers. Design of Different Types of Amplifiers. Multistage Small-Signal Amplifier Design.

16. RF/Microwave Amplifiers II: Large-Signal Design.

High-Power Amplifiers. Large-Signal Amplifier Design. Microwave Power Combining/Dividing Techniques. Signal Distortion Due to Intermodulation Products. Multistage Amplifiers: Large-Signal Design.

17. RF/Microwave Oscillator Design.

Oscillator versus Amplifier Design. Oscillation Conditions. Design of Transistor Oscillators. Generator-Tuning Networks.

18. RF/Microwave Frequency Conversion I: Rectifier and Detector Design.

Small-Signal Analysis of a Diode. Diode Applications in Detector Circuits. Detector Losses. Effect of Matching Network on the Voltage Sensitivity. Detector Design.

19. RF/Microwave Frequency Conversion II: Mixer Design.

Mixer Types. Conversion Loss for SSB Mixers. SSB versus DSB Mixers: Conversion Loss and Noise Figure. One-Diode (or Single-Ended) Mixers. Two-Diode Mixers. Four Diode Mixers. Eight-Diode Mixers. Mixer Summary.

20. RF/Microwave Control Circuit Design.

PN Junction Devices. Switch Configurations. Phase Shifters. Digital Phase Shifters. Semiconductor Phase Shifters. PIN Diode Attenuators.

21. RF/Microwave Integrated Circuit Design.

Microwave Integrated Circuits. MIC Materials. Types of MICs. Hybrid versus Monolithic MICs. Chip Mathematics.


Appendix A: List of Symbols & Abbreviations.
Appendix B: Physical Constants.
Appendix C: International System of Unite (SI).
Appendix D: Unit Prefixes.
Appendix E: Greek Alphabet.
Appendix F: Classical Laws of Electricity, Magnetism and Electromagnetics.
Appendix G: Materials Constants & Frequency Bands.
Appendix H: Conversion Among Two-Port Network Parameters.
Appendix I: Conversion Among the Y-Parameters of a Transistor (Three Configurations: Ce, Cb, and Cc).
Appendix J: Useful Mathematical Formulas.
Appendix K: DC Bias Networks for an FET.
Appendix L: Computer Aided Design (CAD) Examples.
Appendix M: Derivation of the Constant Gain and Noise Figure Circles.
Appendix N: About the Software.

Glossary of Technical Terms.

About the Author.
About the Web Site.



Education in the science of RF and microwave engineering consists of guiding the reader along a gradient of known data, with the highest attention to the basic concepts that form the foundation of this field of study. The basic concepts presented in this book are far more fundamental than the mother sciences of engineering (i.e., physics and mathematics) and cover the essential truth about our physical universe in which we live. These basic truths convey a much deeper understanding about the nature of the physical universe than has ever been discussed in any RF and microwave, or for that matter any scientific textbook.

These basic truths set up a background of discovered knowledge by mankind, against which a smaller sphere of information (i.e., RF and microwave engineering) can be examined. Many of the principles that appear in microwave books are easily describable and thus understood much better once the basic underlying concepts are grasped.

While studying sciences and engineering at the university, the author always looked for simplicity, a higher truth, and a deeper level of understanding in all of the rigorous mathematics and many of the physical laws that were presented. Upon further investigation, the underlying principles that form the backbone of all extant physical sciences have finally emerged and are presented as the fundamentals of physical sciences in Chapter 1 of this work.

A summary of philosophical formation of this work is presented in the form of a pyramid in Chapter 1. From this pyramid, we can see that workable knowledge is like a pyramid, where from a handful of common denominators efficiently expressed by a series of basic postulates, axioms, and natural laws, which form the foundation of a science, an almost innumerable number of devices, circuits, and systems can be thought up and developed. The plethora of the mass of devices, circuits, and systems generated is known as the application mass, which practically approaches infinity in sheer number. This is an important point to grasp, because the foundation portion never changes (a static) while the base area of the pyramid is an ever-changing and evolving arena (a kinetic) where this evolution is in terms of new implementation techniques and technologies.

Following this brief introduction, the fundamental laws and basic principles of electrical engineering, which most advanced textbooks take for granted, are discussed. The reason for their presentation at this early stage, is that in dealing with the subject of RF and microwave engineering, it has been found that a lack of deeper understanding of these fundamentals leads to a shallow perspective and a lack of appreciation of electrical engineering basics, which will eventually lead to serious miscomprehension and misapplication of the subject.

This book is written with emphasis on fundamentals and for this reason all new technical terms are thoroughly defined in the body of the text as they are introduced. This novel approach is based upon the results obtained in recent investigations and research in the field of education, which has shown that the lack of (or the slightest uncertainty on) the definition of terms poses as one of the most formidable obstacles in the reader's mind in achieving full comprehension of the material. A series of uncomprehended or misunderstood technical terms will block one's road to total comprehension and mastery of the subject. This undesirable condition will eventually lead to a dislike and total abandonment of the subject.

The initial motivation was to bring the basics to the forefront and orient the reader in such a way that he or she can think with these fundamentals correctly. This eventually led to writing the first manuscript several years ago and then the final preparation of this book at present.

In preparing this book, the emphasis was shifted from rigorous and sophisticated mathematical solutions of Maxwell's equations and instead has been aptly placed on RF and microwave circuit analysis and design principles using simple concepts while emphasizing the basics all the way.

This book is intended to be used in a 2-semester course in microwave electronics engineering for senior-level or graduate students and should serve as an excellent reference guide for the practicing RF and microwave engineer in the field as well.

The current work starts from very general postulates, considerations and laws and, chapter by chapter, narrows the focus to very specific concepts and applications, culminating in the design of various RF and microwave circuits. The book, divided into five parts and 21 chapters, develops and presents these chapters with the progressive development of concepts following the same pattern as presented in the pyramid of knowledge in Chapter 1, which is:

Part I   The Highest Fundamentals
Chapters 1- 4 form the foundation of electronics.
Part II   Wave Propagation in Networks
Chapters 5-8 present the basics of RF and Microwave science, wave propagation, and network characterization concepts.
Part III   Passive Circuit Design
Chapters 9-11 deal with the Smith Chart and its numerous applications to matching circuits.
Part IV   Basic Considerations in Active Networks
Chapters 12-14 discuss the basic considerations of circuit design.
Part V   Active Networks: Linear and Nonlinear Design
Chapters 15-21 provide detailed analysis and design methodologies of linear and nonlinear active circuits.

A list of symbols used in each chapter and a series of problems are included at the end of each chapter to help the reader gain a fuller understanding of the presented materials. The book ends with a glossary of technical terms and several important appendixes. These appendixes cover physical constants and other important data needed in the analysis or design process, with one appendix fully devoted to several design examples of practical active circuits using computer-aided design techniques based on the "Libra/touchstone" ? software Ver. 6.1 from HPEEsof.


Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020