Home > Store

Digital Communications: Fundamentals and Applications, 2nd Edition

Register your product to gain access to bonus material or receive a coupon.

Digital Communications: Fundamentals and Applications, 2nd Edition


  • Sorry, this book is no longer in print.
Not for Sale



  • NEW - Expanded coverage of error-correction coding—Particularly in the areas of Reed-Solomon codes, turbo codes, and trellis-coded modulation.
  • NEW - Chapter on fading channels—And how to mitigate their degrading effects. Methodically organizes the nomenclature of fading channels, the fading phenomena, and their effects, making them easier to grasp.
    • Prepares students for disciplines such as mobile communications, which require a basic understanding of how such channels suffer the effects of fading, and how to withstand these degrading effects.

  • NEW - Expanded explanations and descriptions of essential digital communication concepts.
  • NEW - Expanded chapter-end problem sets—Adds question sets (and where to find the answers), as well as CD exercises.
  • NEW - Accompanying CD—Contains the educational version of SystemView software by ELANIX®; over 200 additional communications problems (in addition to the ones at the end of each chapter) which can be solved by using the software; and an extensive tutorial on digital signal processing.
    • Allows students to explore the textbook concepts by viewing waveforms, and changing system parameters in the software to see the effects on the overall system.

  • Sophisticated concepts presented in an easy-to-understand, intuitive way—Uses simple numerical examples, including detailed step-by-step “how-to” instructions.
    • Helps students readily grasp the newest technology, such as turbo codes, trellis-coded modulation, fading channels, Reed- Solomon codes, PGP encryption.

  • Techniques developed in the context of a unified structure—The structure, in block diagram form, appears at the beginning of each chapter; blocks in the diagram are emphasized, when appropriate, to correspond to the subject of that chapter.
  • Signal transformations—Organized according to nine functional classes: Formatting and source coding; Baseband signaling; Bandpass signaling; Equalization; Channel coding; Multiplexing and multiple access; Spreading; Encryption; and Synchronization.
  • An emphasis on system goals and trade-offs—e.g., between basic system parameters, such as signal-to-noise ratio, probability of error, and bandwidth (spectral) expenditure.
  • Turbo codes—Features unique, thorough coverage of turbo code concepts and “how-to” examples.
    • Gives students insight into the state-of-the-art technique that allows “squeezing out the last drop” of performance improvement that is theoretically possible by using advanced error- correction techniques.

  • Trellis-coded modulation and Reed-Solomon error-correction codes—Goes beyond simple mathematical description to explain all of the sophisticated math—with analogies of what that math is accomplishing.
    • Exposes students to subtle, but important ideas—how they work and how they can be used as a vehicle for achieving different system goals.

  • Pretty Good Privacy (PGP)—Explains the key features of how PGP works and how it has evolved.
    • Familiarizes students to the security program that has become the “de facto” standard for e-mail and file encryption.

  • An abundance of illustrations (500) and problems and exercises (300).


  • Copyright 2001
  • Edition: 2nd
  • Book
  • ISBN-10: 0-13-084788-7
  • ISBN-13: 978-0-13-084788-1

  • The clear, easy-to-understand introduction to digital communications
  • Completely updated coverage of today's most critical technologies
  • Step-by-step implementation coverage
  • Trellis-coded modulation, fading channels, Reed-Solomon codes, encryption, and more
  • Exclusive coverage of maximizing performance with advanced "turbo codes"
"This is a remarkably comprehensive treatment of the field, covering in considerable detail modulation, coding (both source and channel), encryption, multiple access and spread spectrum. It can serve both as an excellent introduction for the graduate student with some background in probability theory or as a valuable reference for the practicing ommunication system engineer. For both communities, the treatment is clear and well presented."

– Andrew Viterbi, The Viterbi Group

Master every key digital communications technology, concept, and technique.

Digital Communications, Second Edition is a thoroughly revised and updated edition of the field's classic, best-selling introduction. With remarkable clarity, Dr. Bernard Sklar introduces every digital communication technology at the heart of today's wireless and Internet revolutions, providing a unified structure and context for understanding them -- all without sacrificing mathematical precision.

Sklar begins by introducing the fundamentals of signals, spectra, formatting, and baseband transmission. Next, he presents practical coverage of virtually every contemporary modulation, coding, and signal processing technique, with numeric examples and step-by-step implementation guidance. Coverage includes:

  • Signals and processing steps: from information source through transmitter, channel, receiver, and information sink
  • Key tradeoffs: signal-to-noise ratios, probability of error, and bandwidth expenditure
  • Trellis-coded modulation and Reed-Solomon codes: what's behind the math
  • Synchronization and spread spectrum solutions
  • Fading channels: causes, effects, and techniques for withstanding fading
  • The first complete how-to guide to turbo codes: squeezing maximum performance out of digital connections
  • Implementing encryption with PGP, the de facto industry standard

Whether you're building wireless systems, xDSL, fiber or coax-based services, satellite networks, or Internet infrastructure, Sklar presents the theory and the practical implementation details you need. With nearly 500 illustrations and 300 problems and exercises, there's never been a faster way to master advanced digital communications.


The CD-ROM contains a complete educational version of Elanix' SystemView DSP design software, as well as detailed notes for getting started, a comprehensive DSP tutorial, and over 50 additional communications exercises.

Sample Content

Downloadable Sample Chapter

Click here for a sample chapter for this book: 0130847887.pdf

Table of Contents

(NOTE: Each chapter concludes with a Conclusion, References, Problems, Questions, and CD Exercises.)

1. Signals and Spectra.

Digital Communication Signal Processing. Classification of Signals. Spectral Density. Autocorrelation. Random Signals. Signal Transmission through Linear Systems. Bandwidth of Digital Data.

2. Formatting and Baseband Modulation.

Baseband Systems. Formatting Textual Data (Character Coding). Messages, Characters, and Symbols. Formatting Analog Information. Sources of Corruption. Pulse Code Modulation. Uniform and Nonuniform Quantization. Baseband Modulation. Correlative Coding.

3. Baseband Demodulation/Detection.

Signals and Noise. Detection of Binary Signals in Gaussian Noise. Intersymbol Interference. Equalization.

4. Bandpass Modulation and Demodulation/Detection.

Why Modulate? Digital Bandpass Modulation Techniques. Detection of Signals in Gaussian Noise. Coherent Detection. Noncoherent Detection. Complex Envelope. Error Performance for Binary Systems. M-ary Signaling and Performance. Symbol Error Performance for M-ary Systems (M>>2).

5. Communications Link Analysis.

What the System Link Budget Tells the System Engineer. The Channel. Received Signal Power and Noise Power. Link Budget Analysis. Noise Figure, Noise Temperature, and System Temperature. Sample Link Analysis. Satellite Repeaters. System Trade-Offs.

6. Channel Coding: Part 1.

Waveform Coding. Types of Error Control. Structured Sequences. Linear Block Codes. Error-Detecting and Correcting Capability. Usefulness of the Standard Array. Cyclic Codes. Well-Known Block Codes.

7. Channel Coding: Part 2.

Convolutional Encoding. Convolutional Encoder Representation. Formulation of the Convolutional Decoding Problem. Properties of Convolutional Codes. Other Convolutional Decoding Algorithms.

8. Channel Coding: Part 3.

Reed-Solomon Codes. Interleaving and Concatenated Codes. Coding and Interleaving Applied to the Compact Disc Digital Audio System. Turbo Codes.

Appendix 8A. The Sum of Log-Likelihood Ratios.
9. Modulation and Coding Trade-Offs.

Goals of the Communications System Designer. Error Probability Plane. Nyquist Minimum Bandwidth. Shannon-Hartley Capacity Theorem. Bandwidth Efficiency Plane. Modulation and Coding Trade-Offs. Defining, Designing, and Evaluating Systems. Bandwidth-Efficient Modulations. Modulation and Coding for Bandlimited Channels. Trellis-Coded Modulation.

10. Synchronization.

Introduction. Receiver Synchronization. Network Synchronization.

11. Multiplexing and Multiple Access.

Allocation of the Communications Resource. Multiple Access Communications System and Architecture. Access Algorithms. Multiple Access Techniques Employed with INTELSAT. Multiple Access Techniques for Local Area Networks.

12. Spread-Spectrum Techniques.

Spread-Spectrum Overview. Pseudonoise Sequences. Direct-Sequence Spread-Spectrum Systems. Frequency Hopping Systems. Synchronization. Jamming Considerations. Commercial Applications. Cellular Systems.

13. Source Coding.

Sources. Amplitude Quantizing. Differential Pulse-Code Modulation. Adaptive Prediction. Block Coding. Transform Coding. Source Coding for Digital Data. Examples of Source Coding.

14. Encryption and Decryption.

Models, Goals, and Early Cipher Systems. The Secrecy of a Cipher System. Practical Security. Stream Encryption. Public Key Cryptosystems. Pretty Good Privacy.

15. Fading Channels.

The Challenge of Communicating over Fading Channels. Characterizing Mobile-Radio Propagation. Signal Time-Spreading. Time Variance of the Channel Caused by Motion. Mitigating the Degradation Effects of Fading. Summary of the Key Parameters Characterizing Fading Channels. Applications: Mitigating the Effects of Frequency-Selective Fading.

A. A Review of Fourier Techniques.

Signals, Spectra, and Linear Systems. Fourier Techniques for Linear System Analysis. Fourier Transform Properties. Useful Functions. Convolution. Tables of Fourier Transforms and Operations.

B. Fundamentals of Statistical Decision Theory.

Bayes' Theorem. Decision Theory. Signal Detection Example.

C. Response of a Correlator To White Noise.D. Often-Used Identities.E. s-Domain, z-Domain and Digital Filtering.F. List of Symbols.G. SystemView by ELANIX Guide to the CD.



This second edition of Digital Communications: Fundamentals and Applications represents an update of the original publication. The key features that have been updated are:
  • The error-correction coding chapters have been expanded, particularly in the areas of Reed-Solomon codes, turbo codes, and trellis-coded modulation.
  • A new chapter on fading channels and how to mitigate the degrading effects of fading has been introduced.
  • Explanations and descriptions of essential digital communication concepts have been amplified.
  • End-of-chapter problem sets have been expanded. Also, end-of-chapter question sets (and where to find the answers), as well as end-of-chapter CD exercises have been added.
  • A compact disc (CD) containing an educational version of the design software SystemView by ELANIX accompanies the textbook. The CD contains a workbook with over 200 exercises, as well as a concise tutorial on digital signal processing (DSP). CD exercises in the workbook reinforce material in the textbook; concepts can be explored by viewing waveforms with a windows-based PC and by changing parameters to see the effects on the overall system. Some of the exercises provide basic training in using SystemView; others provide additional training in DSP techniques.
The teaching of a one-semester university course proceeds in a very different manner compared with that of a short-course in the same subject. At the university, one has the luxury of time—time to develop the needed skills and mathematical tools, time to practice the ideas with homework exercises. In a short-course, the treatment is almost backwards compared with the university. Because of the time factor, a short-course teacher must "jump in" early with essential concepts and applications. One of the vehicles that I found useful in structuring a short course was to start by handing out a check list. This was not merely an outline of the curriculum. It represented a collection of concepts and nomenclature that are not clearly documented, and are often misunderstood. The short-course students were thus initiated into the course by being challenged. I promised them that once they felt comfortable describing each issue, or answering each question on the list, they would be well on their way toward becoming knowledgeable in the field of digital communications. I have learned that this list of essential concepts is just as valuable for teaching full-semester courses as it is for short courses. Here then is my "check list" for digital communications.
  1. What mathematical dilemma is the cause for there being several definitions of bandwidth? (See Section 1.7.2.)
  2. Why is the ratio of bit energy-to-noise power spectral density, Eb/N0, a natural figure-to-merit for digital communication systems? (See Section 3.1.5.)
  3. When representing timed events, what dilemma can easily result in confusing the most-significant bit (MSB) and the least-significant bit (LSB)? (See Section
  4. The error performance of digital signaling suffers primarily from two degradation types. a) loss in signal-to-noise ratio, b) distortion resulting in an irreducible bit-error probability. How do they differ? (See Section 3.3.2.)
  5. Often times, providing more Eb/N0 will not mitigate the degradation due to intersymbol interference (ISI). Explain why. (See Section 3.3.2.)
  6. At what location in the system is Eb/N0 defined? (See Section 4.3.2.)
  7. Digital modulation schemes fall into one of two classes with opposite behavior characteristics. a) orthogonal signaling, b) phase/amplitude signaling. Describe the behavior of each class. (See Section 4.8.2 and 9.7.)
  8. Why do binary phase shift keying (BPSK) and quaternary phase shift keying (QPSK) manifest the same bit-error-probability relationship? Does the same hold true for M-ary pulse amplitude modulation (M-PAM) and M2-ary quadrature amplitude modulation (M2-QAM) bit-error probability? (See Sections 4.8.4 and
  9. In orthogonal signaling, why does error-performance improve with higher dimensional signaling? (See Section 4.8.5.)
  10. Why is free-space loss a function of wavelength? (See Section 5.3.3.)
  11. What is the relationship between received signal to noise (S/N) ratio and carrier to noise (C/N) ratio? (See Section 5.4.)
  12. Describe four types of trade-offs that can be accomplished by using an error-correcting code. (See Section 6.3.4.)
  13. Why do traditional error-correcting codes yield error-performance degradation at low values of Eb/N0? (See Section 6.3.4.)
  14. Of what use is the standard array in understanding a block code, and in evaluating its capability? (See Section 6.6.5.)
  15. Why is the Shannon limit of -1.6 dB not a useful goal in the design of real systems? (See Section
  16. 16.What are the consequences of the fact that the Viterbi decoding algorithm does not yield a posteriori probabilities? What is a more descriptive name for the Viterbi algorithm? (See Section 8.4.6.)
  17. 17.Why do binary and 4-ary orthogonal frequency shift keying (FSK) manifest the same bandwidth-efficiency relationship? (See Section 9.5.1.)
  18. 18.Describe the subtle energy and rate transformations of received signals: from data-bits to channel-bits to symbols to chips. (See Section 9.7.7.)
  19. 19.Define the following terms: Baud, State, Communications Resource, Chip, Robust Signal. (See Sections 1.1.3 and 7.2.2, Chapter 11, and Sections 12.3.2 and 12.4.2.)
  20. 20.In a fading channel, why is signal dispersion independent of fading rapidity? (See Section

I hope you find it useful to be challenged in this way. Now, let us describe the purpose of the book in a more methodical way. This second edition is intended to provide a comprehensive coverage of digital communication systems for senior level undergraduates, first year graduate students, and practicing engineers. Though the emphasis is on digital communications, necessary analog fundamentals are included since analog waveforms are used for the radio transmission of digital signals. The key feature of a digital communication system is that it deals with a finite set of discrete messages, in contrast to an analog communication system in which messages are defined on a continuum. The objective at the receiver of the digital system is not to reproduce a waveform with precision; it is instead to determine from a noise-perturbed signal, which of the finite set of waveforms had been sent by the transmitter. In fulfillment of this objective, there has arisen an impressive assortment of signal processing techniques.

The book develops these techniques in the context of a unified structure. The structure, in block diagram form, appears at the beginning of each chapter; blocks in the diagram are emphasized, when appropriate, to correspond to the subject of that chapter. Major purposes of the book are to add organization and structure to a field that has grown and continues to grow rapidly, and to insure awareness of the "big picture" even while delving into the details. Signals and key processing steps are traced from the information source through the transmitter, channel, receiver, and ultimately to the information sink. Signal transformations are organized according to nine functional classes: Formatting and source coding, Baseband signaling, Bandpass signaling, Equalization, Channel coding, Muliplexing and multiple access, Spreading, Encryption, and Synchronization. Throughout the book, emphasis is placed on system goals and the need to trade off basic system parameters such as signal-to-noise ratio, probability of error, and bandwidth expenditure.


Chapter 1 introduces the overall digital communication system and the basic signal transformations that are highlighted in subsequent chapters. Some basic ideas of random variables and the additive white Gaussian noise (AWGN) model are reviewed. Also, the relationship between power spectral density and autocorrelation, and the basics of signal transmission through linear systems are established. Chapter 2 covers the signal processing step, known as formatting, in order to render an information signal compatible with a digital system. Chapter 3 emphasizes baseband signaling, the detection of signals in Gaussian noise, and receiver optimization. Chapter 4 deals with bandpass signaling and its associated modulation and demodulation/detection techniques. Chapter 5 deals with link analysis, an important subject for providing overall system insight; it considers some subtleties that are often missed. Chapters 6, 7, and 8 deal with channel coding—a cost-effective way of providing a variety of system performance trade-offs. Chapter 6 emphasizes linear block codes, Chapter 7 deals with convolutional codes, and Chapter 8 deals with Reed-Solomon codes and concatenated codes such as turbo codes.

Chapter 9 considers various modulation/coding system trade-offs dealing with probability of bit-error performance, bandwidth efficiency, and signal-to-noise ratio. It also treats the important area of coded modulation, particularly trellis-coded modulation. Chapter 10 deals with synchronization for digital systems. It covers phase-locked loop implementation for achieving carrier synchronization. It covers bit synchronization, frame synchronization, and network synchronization, and it introduces some ways of performing synchronization using digital methods.

Chapter 11 treats multiplexing and multiple access. It explores techniques that are available for utilizing the communication resource efficiently. Chapter 12 introduces spread spectrum techniques and their application in such areas as multiple access, ranging, and interference rejection. This technology is important for both military and commercial applications. Chapter 13 deals with source coding which is a special class of data formatting. Both formatting and source coding involve digitization of data; the main difference between them is that source coding additionally involves data redundancy reduction. Rather than considering source coding immediately after formatting, it is purposely treated in a later chapter so as not to interrupt the presentation flow of the basic processing steps. Chapter 14 covers basic encryption/decryption ideas. It includes some classical concepts, as well as a class of systems called public key cryptosystems, and the widely used E-mail encryption software known as Pretty Good Privacy (PGP). Chapter 15 deals with fading channels. Here, we deal with applications, such as mobile radios, where characterization of the channel is much more involved than that of a nonfading one. The design of a communication system that will withstand the degradation effects of fading can be much more challenging than the design of its nonfading counterpart. In this chapter, we describe a variety of techniques that can mitigate the effects of fading, and we show some successful designs that have been implemented.

It is assumed that the reader is familiar with Fourier methods and convolution. Appendix A reviews these techniques, emphasizing those properties that are particularly useful in the study of communication theory. It also assumed that the reader has a knowledge of basic probability and has some familiarity with random variables. Appendix B builds on these disciplines for a short treatment on statistical decision theory with emphasis on hypothesis testing—so important in the understanding of detection theory. A new section, Appendix E, has been added to serve as a short tutorial on s-domain, z-domain, and digital filtering. A concise DSP tutorial also appears on the CD that accompanies the book.

If the book is used for a two-term course, a simple partitioning is suggested; the first seven chapters can be taught in the first term, and the last eight chapters in the second term. If the book is used for a one-term introductory course, it is suggested that the course material be selected from the following chapters: 1, 2, 3, 4, 5, 6, 7, 9, 10, and 12.


Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020