# The Physical Basis of Transmission Lines

This chapter is from the book

## 7.11 The Impedance of a Transmission Line

What impedance does a battery see when connected to the front of a transmission line? As soon as the battery is connected to the transmission line, the voltage signal sees the instantaneous impedance of the transmission line, and the signal starts propagating down the line. As long as the signal continues to propagate, the input impedance always looks like the instantaneous impedance, which is the characteristic impedance.

The impedance the battery sees when looking into the line is thus the same as the instantaneous impedance of the line—as long as the signal is propagating down the line. It looks like a resistor, and the current into the line is directly proportional to the voltage applied.

A circuit element that has a constant current through it for a constant voltage applied is an ideal resistor. From the battery’s perspective, when the terminals are attached to the front end of the line and the signal propagates down the line, the transmission line draws a constant current and acts like a resistor to the battery. The impedance of the transmission line, as seen by the battery, is a constant resistance, as long as the signal is propagating down the line. There is no test the battery can do that to distinguish the transmission line from a resistor, at least while the signal is propagating down and back on the line.

What does it mean to refer to the impedance of a cable? An RG58 cable is often referred to as a 50-Ohm cable. What does this really mean? Suppose we were to take a 3-foot length of RG58 cable and measure the impedance at the front end, between the signal and return paths. What impedance will we measure? Of course, we can measure the impedance with an Ohmmeter. If we connect an Ohmmeter to the front end of the 3-foot transmission line, between the central signal line and the outer shield, as shown in Figure 7-13, what will it read? Will it be an open, a short, or 50 Ohms?

Let’s be more specific. Suppose we were to measure the impedance using a digital multimeter (DMM) with a liquid crystal display (LCD) that updates in a second. What impedance will be measured?

Of course, if we wait long enough, the short length of cable will look like an open, and we would measure infinite as the input impedance. So, if the input impedance of this short cable is infinite, what does it mean to have a 50-Ohm cable? Where does the characteristic-impedance attribute come in?

To explore this further, consider a more extreme, very long length of RG58 cable. It’s so long, in fact, that the line stretches from the earth to the moon. This is about 240,000 miles long. As we might recall from high school, the speed of light in a vacuum is about 186,000 miles per second, or close to 130,000 miles per second in the dielectric of the RG58 cable. It would take light about 2 seconds to go from one end of the cable to the far end and another 2 seconds to come back. If we attach our DMM to the front end of this long line, what will it see as the impedance? Remember, the DMM finds the resistance by connecting a 1-volt source to the device under test and measuring the ratio of the voltage applied to the current draw.

This is exactly the case of driving a transmission line, provided that we do the impedance measurement in less than the 4-second round-trip time of flight. During the first 4 seconds, while the signal is propagating out to the end of the interconnect and back, the current into the front of the line will be a constant amount equal to the current required by the signal to charge up successive sections of the cable as it propagates outward.

The impedance the source sees looking into the front of the line, the “input” impedance, will be the same as the instantaneous impedance the signal sees, which is the characteristic impedance of the line. In fact, the source won’t know that there is an end to the transmission line until a round-trip time of flight, or 4 seconds, later. During the first 4 seconds of measurement, the Ohmmeter should read the characteristic impedance of the line, or 50 Ohms, in this case.

But we know that if we wait a day with the Ohmmeter connected, we will eventually measure the input impedance of the cable to be an open. Here are the two extremes: Initially, we measure 50 Ohms, but after a long time, we measure an open. So, what is the input impedance of the line?

The answer is that there is no one value. It is time dependent; it changes. This example illustrates that the input impedance of a transmission line is time dependent; it depends on how long we are doing the measurement compared to the round-trip time of flight. This is illustrated in Figure 7-14. Within the round-trip time of flight, the impedance looking into the front end of the transmission line is the characteristic impedance of the line. After the round-trip time of flight, the input impedance can be anywhere from infinite to zero, depending on what is at the far end of the transmission line.

When we refer to the impedance of a cable or a line as being 50 Ohms, we are really saying the instantaneous impedance a signal would see propagating down the line is 50 Ohms. Or, the characteristic impedance of the line is 50 Ohms. Or, initially, if we look for a time, short compared to a round-trip time of flight, we will see 50 Ohms as the input impedance of the interconnect.

Even though these words sound similar, there is an important difference between the impedance, the input impedance, the instantaneous impedance, and the characteristic impedance of an interconnect. Just saying “the impedance” is ambiguous.

The instantaneous impedance of the transmission line is the impedance the signal sees as it propagates down the line. If the cross section is uniform, the instantaneous impedance will be the same down the line. However, it may change where there are discontinuities, for example, at the end. If the end is open, the signal will see an infinite instantaneous impedance when it hits the end of the line. If there is a branch, it will see a drop in the instantaneous impedance at the branch point.

The characteristic impedance of the interconnect is a physical quality of a uniform transmission line that characterizes the transmission line due to its geometry and material properties. It is equal to the one value of instantaneous impedance the signal would see as it propagates down the uniform cross section. If the transmission line is not uniform, the instantaneous impedance changes, and there is not one impedance that characterizes the line. A characteristic impedance applies only to a uniform transmission line.

Everyone who works in the signal-integrity field gets lazy sometimes and just uses the term impedance. We therefore must ask the qualifying question of which impedance we mean or look at the context of its use to know which of these three impedances we are referring to. Knowing the distinction, we can all try to use the right one and be less ambiguous.

When the rise time is shorter than the round-trip time of flight of an interconnect, a driver will see the interconnect with a resistive input impedance equal to the characteristic impedance of the line during the rising edge. Even though the line may be open at the far end, during the transition time, the front of the line will behave like a resistor.

The round-trip time of flight is related to the dielectric constant of the material and the length of the line. With rise times for most drivers in the sub-nanosecond regime, any interconnect longer than a few inches will look long and behave like a resistive load to the driver during the transition. This is one of the important reasons that the transmission line behavior of all interconnects must be considered.

Given this criterion, virtually all interconnects in high-speed digital systems will behave like transmission lines, and these properties will dominate the signal-integrity effects. For a transmission line on a board that is 3 inches long, the round-trip time of flight is about 1 nsec. If the integrated circuit (IC) driving the line has a rise time less than 1 nsec, the impedance it will see looking into the front of the line during the rising or falling edge will be the characteristic impedance of the line. The driver IC will see an impedance that acts resistive. If the rise time is very much longer than 1 nsec, it will see the impedance of the line as an open. If the rise time of the signal is somewhere between, the driver will see a very complicated, changing impedance as the edge bounces around between the low impedance driver and the open receiver. The received voltage can often be analyzed only using simulation tools. These tools are described in Chapter 8 “Transmission Lines and Reflections.”

The round-trip time of flight is a very important parameter of a transmission line. To a driver, the line will seem resistive for this time. Figure 7-15 shows the round-trip time of flight for various-length transmission lines made with air (εr = 1), FR4 (εr = 4), and ceramic (εr = 10) dielectric materials. In most systems with clock frequencies higher than 200 MHz, the rise time is less than 0.5 nsec. For these systems, all transmission lines longer than about 1.5 inches will appear resistive during the rise time. This means for virtually all high-speed drivers, when they drive a transmission line during the transition, the input impedance they see will act like a resistor.

### InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

## Overview

Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

## Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

### Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

### Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

### Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

### Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

### Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

### Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

## Other Collection and Use of Information

### Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

### Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

### Do Not Track

This site currently does not respond to Do Not Track signals.

## Security

Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

## Children

This site is not directed to children under the age of 13.

## Marketing

Pearson may send or direct marketing communications to users, provided that

• Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
• Such marketing is consistent with applicable law and Pearson's legal obligations.
• Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
• Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

## Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

## Choice/Opt-out

Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

## Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

## Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

## Sharing and Disclosure

Pearson may disclose personal information, as follows:

• As required by law.
• With the consent of the individual (or their parent, if the individual is a minor)
• In response to a subpoena, court order or legal process, to the extent permitted or required by law
• To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
• In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
• To investigate or address actual or suspected fraud or other illegal activities
• To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
• To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
• To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.