Home > Articles

Effective Java Generics

Eight ways to maximize the benefits and minimize the complications of generics in Java.

Save 35% off the list price* of the related book or multi-format eBook (EPUB + MOBI + PDF) with discount code ARTICLE.
* See informit.com/terms

This chapter is from the book

This chapter is from the book

Effective tips for working with Java Generics

SINCE Java 5, generics have been a part of the language. Before generics, you had to cast every object you read from a collection. If someone accidentally inserted an object of the wrong type, casts could fail at runtime. With generics, you tell the compiler what types of objects are permitted in each collection. The compiler inserts casts for you automatically and tells you at compile time if you try to insert an object of the wrong type. This results in programs that are both safer and clearer, but these benefits, which are not limited to collections, come at a price. This chapter tells you how to maximize the benefits and minimize the complications.

Item 26: Don’t use raw types

First, a few terms. A class or interface whose declaration has one or more type parameters is a generic class or interface [JLS, 8.1.2, 9.1.2]. For example, the List interface has a single type parameter, E, representing its element type. The full name of the interface is List<E> (read “list of E”), but people often call it List for short. Generic classes and interfaces are collectively known as generic types.

Each generic type defines a set of parameterized types, which consist of the class or interface name followed by an angle-bracketed list of actual type parameters corresponding to the generic type’s formal type parameters [JLS, 4.4, 4.5]. For example, List<String> (read “list of string”) is a parameterized type representing a list whose elements are of type String. (String is the actual type parameter corresponding to the formal type parameter E.)

Finally, each generic type defines a raw type, which is the name of the generic type used without any accompanying type parameters [JLS, 4.8]. For example, the raw type corresponding to List<E> is List. Raw types behave as if all of the generic type information were erased from the type declaration. They exist primarily for compatibility with pre-generics code.

Before generics were added to Java, this would have been an exemplary collection declaration. As of Java 9, it is still legal, but far from exemplary:

// Raw collection type - don't do this!

// My stamp collection. Contains only Stamp instances.
private final Collection stamps = ... ;

If you use this declaration today and then accidentally put a coin into your stamp collection, the erroneous insertion compiles and runs without error (though the compiler does emit a vague warning):

// Erroneous insertion of coin into stamp collection
stamps.add(new Coin( ... )); // Emits "unchecked call" warning

You don’t get an error until you try to retrieve the coin from the stamp collection:

// Raw iterator type - don't do this!
for (Iterator i = stamps.iterator(); i.hasNext(); )
    Stamp stamp = (Stamp) i.next(); // Throws ClassCastException

As mentioned throughout this book, it pays to discover errors as soon as possible after they are made, ideally at compile time. In this case, you don’t discover the error until runtime, long after it has happened, and in code that may be distant from the code containing the error. Once you see the ClassCastException, you have to search through the codebase looking for the method invocation that put the coin into the stamp collection. The compiler can’t help you, because it can’t understand the comment that says, “Contains only Stamp instances.”

With generics, the type declaration contains the information, not the comment:

// Parameterized collection type - typesafe
private final Collection<Stamp> stamps = ... ;

From this declaration, the compiler knows that stamps should contain only Stamp instances and guarantees it to be true, assuming your entire codebase compiles without emitting (or suppressing; see Item 27) any warnings. When stamps is declared with a parameterized type declaration, the erroneous insertion generates a compile-time error message that tells you exactly what is wrong:

Test.java:9: error: incompatible types: Coin cannot be converted
to Stamp
    c.add(new Coin());

The compiler inserts invisible casts for you when retrieving elements from collections and guarantees that they won’t fail (assuming, again, that all of your code did not generate or suppress any compiler warnings). While the prospect of accidentally inserting a coin into a stamp collection may appear far-fetched, the problem is real. For example, it is easy to imagine putting a BigInteger into a collection that is supposed to contain only BigDecimal instances.

As noted earlier, it is legal to use raw types (generic types without their type parameters), but you should never do it. If you use raw types, you lose all the safety and expressiveness benefits of generics. Given that you shouldn’t use them, why did the language designers permit raw types in the first place? For compatibility. Java was about to enter its second decade when generics were added, and there was an enormous amount of code in existence that did not use generics. It was deemed critical that all of this code remain legal and interoperate with newer code that does use generics. It had to be legal to pass instances of parameterized types to methods that were designed for use with raw types, and vice versa. This requirement, known as migration compatibility, drove the decisions to support raw types and to implement generics using erasure (Item 28).

While you shouldn’t use raw types such as List, it is fine to use types that are parameterized to allow insertion of arbitrary objects, such as List<Object>. Just what is the difference between the raw type List and the parameterized type List<Object>? Loosely speaking, the former has opted out of the generic type system, while the latter has explicitly told the compiler that it is capable of holding objects of any type. While you can pass a List<String> to a parameter of type List, you can’t pass it to a parameter of type List<Object>. There are sub-typing rules for generics, and List<String> is a subtype of the raw type List, but not of the parameterized type List<Object> (Item 28). As a consequence, you lose type safety if you use a raw type such as List, but not if you use a parameterized type such as List<Object>.

To make this concrete, consider the following program:

// Fails at runtime - unsafeAdd method uses a raw type (List)!
public static void main(String[] args) {
    List<String> strings = new ArrayList<>();
    unsafeAdd(strings, Integer.valueOf(42));
    String s = strings.get(0); // Has compiler-generated cast

private static void unsafeAdd(List list, Object o) {

This program compiles, but because it uses the raw type List, you get a warning:

Test.java:10: warning: [unchecked] unchecked call to add(E) as a
member of the raw type List

And indeed, if you run the program, you get a ClassCastException when the program tries to cast the result of the invocation strings.get(0), which is an Integer, to a String. This is a compiler-generated cast, so it’s normally guaranteed to succeed, but in this case we ignored a compiler warning and paid the price.

If you replace the raw type List with the parameterized type List<Object> in the unsafeAdd declaration and try to recompile the program, you’ll find that it no longer compiles but emits the error message:

Test.java:5: error: incompatible types: List<String> cannot be
converted to List<Object>
    unsafeAdd(strings, Integer.valueOf(42));

You might be tempted to use a raw type for a collection whose element type is unknown and doesn’t matter. For example, suppose you want to write a method that takes two sets and returns the number of elements they have in common. Here’s how you might write such a method if you were new to generics:

// Use of raw type for unknown element type - don't do this!
static int numElementsInCommon(Set s1, Set s2) {
    int result = 0;
    for (Object o1 : s1)
        if (s2.contains(o1))
    return result;

This method works but it uses raw types, which are dangerous. The safe alternative is to use unbounded wildcard types. If you want to use a generic type but you don’t know or care what the actual type parameter is, you can use a question mark instead. For example, the unbounded wildcard type for the generic type Set<E> is Set<?> (read “set of some type”). It is the most general parameterized Set type, capable of holding any set. Here is how the numElementsInCommon declaration looks with unbounded wildcard types:

// Uses unbounded wildcard type - typesafe and flexible
static int numElementsInCommon(Set<?> s1, Set<?> s2) { ... }

What is the difference between the unbounded wildcard type Set<?> and the raw type Set? Does the question mark really buy you anything? Not to belabor the point, but the wildcard type is safe and the raw type isn’t. You can put any element into a collection with a raw type, easily corrupting the collection’s type invariant (as demonstrated by the unsafeAdd method on page 119); you can’t put any element (other than null) into a Collection<?>. Attempting to do so will generate a compile-time error message like this:

WildCard.java:13: error: incompatible types: String cannot be
converted to CAP#1
  where CAP#1 is a fresh type-variable:
    CAP#1 extends Object from capture of ?

Admittedly this error message leaves something to be desired, but the compiler has done its job, preventing you from corrupting the collection’s type invariant, whatever its element type may be. Not only can’t you put any element (other than null) into a Collection<?>, but you can’t assume anything about the type of the objects that you get out. If these restrictions are unacceptable, you can use generic methods (Item 30) or bounded wildcard types (Item 31).

There are a few minor exceptions to the rule that you should not use raw types. You must use raw types in class literals. The specification does not permit the use of parameterized types (though it does permit array types and primitive types) [JLS, 15.8.2]. In other words, List.class, String[].class, and int.class are all legal, but List<String>.class and List<?>.class are not.

A second exception to the rule concerns the instanceof operator. Because generic type information is erased at runtime, it is illegal to use the instanceof operator on parameterized types other than unbounded wildcard types. The use of unbounded wildcard types in place of raw types does not affect the behavior of the instanceof operator in any way. In this case, the angle brackets and question marks are just noise. This is the preferred way to use the instanceof operator with generic types:

// Legitimate use of raw type - instanceof operator
if (o instanceof Set) {       // Raw type
    Set<?> s = (Set<?>) o;    // Wildcard type

Note that once you’ve determined that o is a Set, you must cast it to the wildcard type Set<?>, not the raw type Set. This is a checked cast, so it will not cause a compiler warning.

In summary, using raw types can lead to exceptions at runtime, so don’t use them. They are provided only for compatibility and interoperability with legacy code that predates the introduction of generics. As a quick review, Set<Object> is a parameterized type representing a set that can contain objects of any type, Set<?> is a wildcard type representing a set that can contain only objects of some unknown type, and Set is a raw type, which opts out of the generic type system. The first two are safe, and the last is not.

For quick reference, the terms introduced in this item (and a few introduced later in this chapter) are summarized in the following table:

Term Example Item
Parameterized type List<String> Item 26
Actual type parameter String Item 26
Generic type List<E> Items 26, 29
Formal type parameter E Item 26
Unbounded wildcard type List<?> Item 26
Raw type List Item 26
Bounded type parameter <E extends Number> Item 29
Recursive type bound <T extends Comparable<T>> Item 30
Bounded wildcard type List<? extends Number> Item 31
Generic method static <E> List<E> asList(E[] a) Item 30
Type token String.class Item 33

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020