Home > Articles > Operating Systems, Server

Process Management in the FreeBSD Operating System

This chapter from The Design and Implementation of the FreeBSD Operating System, 2nd Edition describes the composition of a process, the method that the system uses to switch between the process’s threads, and the scheduling policy that it uses to promote sharing of the CPU. It also introduces process creation and termination, and details the signal and process-debugging facilities.
This chapter is from the book

4.1 Introduction to Process Management

A process is a program in execution. A process has an address space containing a mapping of its program’s object code and global variables. It also has a set of kernel resources that it can name and on which it can operate using system calls. These resources include its credentials, signal state, and its descriptor array that gives it access to files, pipes, sockets, and devices. Each process has at least one and possibly many threads that execute its code. Every thread represents a virtual processor with a full context worth of register state and its own stack mapped into the address space. Every thread running in the process has a corresponding kernel thread, with its own kernel stack that represents the user thread when it is executing in the kernel as a result of a system call, page fault, or signal delivery.

A process must have system resources, such as memory and the underlying CPU. The kernel supports the illusion of concurrent execution of multiple processes by scheduling system resources among the set of processes that are ready to execute. On a multiprocessor, multiple threads of the same or different processes may execute concurrently. This chapter describes the composition of a process, the method that the system uses to switch between the process’s threads, and the scheduling policy that it uses to promote sharing of the CPU. It also introduces process creation and termination, and details the signal and process-debugging facilities.

Two months after the developers began the first implementation of the UNIX operating system, there were two processes: one for each of the terminals of the PDP-7. At age 10 months, and still on the PDP-7, UNIX had many processes, the fork operation, and something like the wait system call. A process executed a new program by reading in a new program on top of itself. The first PDP-11 system (First Edition UNIX) saw the introduction of exec. All these systems allowed only one process in memory at a time. When a PDP-11 with memory management (a KS-11) was obtained, the system was changed to permit several processes to remain in memory simultaneously, to reduce swapping. But this change did not apply to multiprogramming because disk I/O was synchronous. This state of affairs persisted into 1972 and the first PDP-11/45 system. True multiprogramming was finally introduced when the system was rewritten in C. Disk I/O for one process could then proceed while another process ran. The basic structure of process management in UNIX has not changed since that time [Ritchie, 1988].

The threads of a process operate in either user mode or kernel mode. In user mode, a thread executes application code with the machine in a nonprivileged protection mode. When a thread requests services from the operating system with a system call, it switches into the machine’s privileged protection mode via a protected mechanism and then operates in kernel mode.

The resources used by a thread are split into two parts. The resources needed for execution in user mode are defined by the CPU architecture and typically include the CPU’s general-purpose registers, the program counter, the processor-status register, and the stack-related registers, as well as the contents of the memory segments that constitute FreeBSD’s notion of a program (the text, data, shared library, and stack segments).

Kernel-mode resources include those required by the underlying hardware such as registers, program counter, and the stack pointer. These resources also include the state required for the FreeBSD kernel to provide system services for a thread. This kernel state includes parameters to the current system call, the current process’s user identity, scheduling information, and so on. As described in Section 3.1, the kernel state for each process is divided into several separate data structures, with two primary structures: the process structure and the thread structure.

The process structure contains information that must always remain resident in main memory, along with references to other structures that remain resident, whereas the thread structure tracks information that needs to be resident only when the process is executing such as its kernel run-time stack. Process and thread structures are allocated dynamically as part of process creation and are freed when the process is destroyed as it exits.


FreeBSD supports transparent multiprogramming: the illusion of concurrent execution of multiple processes or programs. It does so by context switching—that is, by switching between the execution context of the threads within the same or different processes. A mechanism is also provided for scheduling the execution of threads—that is, for deciding which one to execute next. Facilities are provided for ensuring consistent access to data structures that are shared among processes.

Context switching is a hardware-dependent operation whose implementation is influenced by the underlying hardware facilities. Some architectures provide machine instructions that save and restore the hardware-execution context of a thread or an entire process including its virtual-address space. On others, the software must collect the hardware state from various registers and save it, then load those registers with the new hardware state. All architectures must save and restore the software state used by the kernel.

Context switching is done frequently, so increasing the speed of a context switch noticeably decreases time spent in the kernel and provides more time for execution of user applications. Since most of the work of a context switch is expended in saving and restoring the operating context of a thread or process, reducing the amount of the information required for that context is an effective way to produce faster context switches.


Fair scheduling of threads and processes is an involved task that is dependent on the types of executable programs and on the goals of the scheduling policy. Programs are characterized according to the amount of computation and the amount of I/O that they do. Scheduling policies typically attempt to balance resource utilization against the time that it takes for a program to complete. In FreeBSD’s default scheduler, which we shall refer to as the timeshare scheduler, a process’s priority is periodically recalculated based on various parameters, such as the amount of CPU time it has used, the amount of memory resources it holds or requires for execution, etc. Some tasks require more precise control over process execution called real-time scheduling. Real-time scheduling must ensure that threads finish computing their results by a specified deadline or in a particular order. The FreeBSD kernel implements real-time scheduling using a separate queue from the queue used for regular timeshared processes. A process with a real-time priority is not subject to priority degradation and will only be preempted by another thread of equal or higher real-time priority. The FreeBSD kernel also implements a queue of threads running at idle priority. A thread with an idle priority will run only when no other thread in either the real-time or timeshare-scheduled queues is runnable and then only if its idle priority is equal to or greater than all other runnable idle-priority threads.

The FreeBSD timeshare scheduler uses a priority-based scheduling policy that is biased to favor interactive programs, such as text editors, over long-running batch-type jobs. Interactive programs tend to exhibit short bursts of computation followed by periods of inactivity or I/O. The scheduling policy initially assigns a high execution priority to each thread and allows that thread to execute for a fixed time slice. Threads that execute for the duration of their slice have their priority lowered, whereas threads that give up the CPU (usually because they do I/O) are allowed to remain at their priority. Threads that are inactive have their priority raised. Jobs that use large amounts of CPU time sink rapidly to a low priority, whereas interactive jobs that are mostly inactive remain at a high priority so that, when they are ready to run, they will preempt the long-running lower-priority jobs. An interactive job, such as a text editor searching for a string, may become compute-bound briefly and thus get a lower priority, but it will return to a high priority when it is inactive again while the user thinks about the result.

Some tasks, such as the compilation of a large application, may be done in many small steps in which each component is compiled in a separate process. No individual step runs long enough to have its priority degraded, so the compilation as a whole impacts the interactive programs. To detect and avoid this problem, the scheduling priority of a child process is propagated back to its parent. When a new child process is started, it begins running with its parent’s current priority. As the program that coordinates the compilation (typically make) starts many compilation steps, its priority is dropped because of the CPU-intensive behavior of its children. Later compilation steps started by make begin running and stay at a lower priority, which allows higher-priority interactive programs to run in preference to them as desired.

The system also needs a scheduling policy to deal with problems that arise from not having enough main memory to hold the execution contexts of all processes that want to execute. The major goal of this scheduling policy is to minimize thrashing—a phenomenon that occurs when memory is in such short supply that more time is spent in the system handling page faults and scheduling processes than in user mode executing application code.

The system must both detect and eliminate thrashing. It detects thrashing by observing the amount of free memory. When the system has little free memory and a high rate of new memory requests, it considers itself to be thrashing. The system reduces thrashing by marking the least recently run process as not being allowed to run, allowing the pageout daemon to push all the pages associated with the process to backing store. On most architectures, the kernel also can push to backing store the kernel stacks of all the threads of the marked process. The effect of these actions is to cause the process and all its threads to be swapped out (see Section 6.12). The memory freed by blocking the process can then be distributed to the remaining processes, which usually can then proceed. If the thrashing continues, additional processes are selected to be blocked from running until enough memory becomes available for the remaining processes to run effectively. Eventually, enough processes complete and free their memory that blocked processes can resume execution. However, even if there is not enough memory, the blocked processes are allowed to resume execution after about 20 seconds. Usually, the thrashing condition will return, requiring that some other process be selected for being blocked (or that an administrative action be taken to reduce the load).

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020