Home > Store

Space-Time Wireless Channels

Register your product to gain access to bonus material or receive a coupon.

Space-Time Wireless Channels


  • Sorry, this book is no longer in print.
Not for Sale


  • Copyright 2003
  • Dimensions: 7" x 9-1/4"
  • Pages: 368
  • Edition: 1st
  • Book
  • ISBN-10: 0-13-065647-X
  • ISBN-13: 978-0-13-065647-6

A practical, "first-principles" approach to space-time wireless channel design.

  • A practical approach to space-time wireless channel design
  • Integrates essential principles from communications, electromagnetics, and random process theory
  • Includes detailed coverage of diversity, multipath applications, and antenna array design
  • Contains extensive examples, illustrations, and problem sets

Next-generation broadband radio systems must deliver unprecedented performance and higher data rates, while coping with increased spectral congestion. To achieve these goals, engineers need an in-depth understanding of radio channels that fade in time, frequency, and space. In Space-Time Wireless Channels, leading researcher Gregory D. Durgin presents a pragmatic, first-principles approach that integrates crucial concepts and techniques from communications, electromagnetics, and random process theory.

Durgin focuses on comprehension and practicality, offering extensive examples, illustrations, and problem sets, while avoiding gratuitious mathematics and moving most derivations to end-of-chapter appendices. Coverage includes:

  • Fundamentals of space, time, and frequency transmission and random process theory
  • Electromagnetic description of space-time channels and the physics of small-scale fading
  • First- and second-order statistics of fading channels
  • Angle spectrum concepts and applications, including vector/scalar space and multipath shape factors
  • Antenna diversity, temporal diversity, and bit error rates
  • Multipath channels: separation, signaling, block coding, and antenna array design

Appendices list special functions, Fourier transform examples, and random process theory concepts, as well as all relevant mathematical symbols, conventions, and acronyms.

Sample Content

Online Sample Chapters

Wireless Channel Modeling

Wireless Communications: Modeling Random Fading Channels

Table of Contents


1. Introduction.

Perspectives in Propagation. The Case for Space. Trends in Wireless Communications. About This Book.

2. Signal Transmission.

Baseband Representation. Channel Coherence. Using the Complete Baseband Channel. Chapter Summary.

3 Random Fading Channels.

Channel Correlation. Power Spectral Density (PSD). Joint Statistics. Width of the PSD. Chapter Summary.

4. Physics Of Small-Scale Fading.

Plane Wave Representation. The Local Area. Wave Groupings for Multipath Components. The SLAC Model. Chapter Summary.

5. First-Order Channel Statistics.

Mean Received Power. Envelope Probability Density Functions. Closed-Form PDF Solutions. Two-Wave with Diffuse Power PDF. Chapter Summary. Envelope Characteristic Functions.

6. The Angle Spectrum.

Vector and Scalar Space. Angle Spectrum Concepts. Multipath Shape Factors. Illustrative Examples. Chapter Summary.

7. Second-Order Channel Statistics.

The Level-Crossing Problem. Envelope Unit Autocovariance. Classical Spatial Channel Models. Properties of Wideband Channels. Chapter Summary. Approximate Spatial Autocovariance. Classical Envelope Autocovariance. Rician Mean Approximation.

8. Diversity.

Diversity Concept. Combining Techniques. BER and Capacity. Chapter Summary.

9. Mimo Channels.

Conventional Multiple Antenna Systems. Separating Channels in Multipath. Practical MIMO Signaling. Space-Time Block Coding. Chapter Summary.

10. Array Design In Multipath.

Rules of Spatial Decorrelation. Modeling Double Spatial Dependencies. Example System. Peer-to-Peer Space-Time Measurements. Chapter Summary. Description of Measured Parameters.

Appendix A. Special Functions.

Singularity Functions. Sinc Function. Gamma Function. Bessel Functions. Complete Elliptic Integral Functions. Q-function.

Appendix B. Fourier Analysis.

Basic Fourier Transform Definitions. Time-Doppler Transforms. Frequency-Delay Transforms. Space-Wavenumber Transforms. Trigonometric Relationships.

Appendix C. Random Process Theory.

Definitions. Probability Density Functions. Functions of Random Variables.

Appendix D. Glossary.

Mathematical Symbols and Conventions. Acronym List.





Let me begin by saying that without my friends David A. de Wolf, Gary S. Brown,and Theodore S. Rappaport, this book would have never happened. Professor deWolf, besides being the man who introduced me to scholarly research, has proofedmuch of the mathematical content in my work and has been a great collaboratorduring my time at Virginia Tech. Professor Brown taught me most of what I knowabout electromagnetics; I borrow much of his notation from well-crafted lectures onrough surface scattering and analytical propagation analysis. Professor Rappaport—my principle graduate advisor—has been a true friend by encouraging this projectand giving me a first-rate graduate student experience at Virginia Tech 's Mobile &Portable Radio Research Group.

Back in 1998 I was sitting through a presentation made by an elder statesman ofradio, a very accomplished and respected engineering professor. The presentationincluded many wireless channel measurements. About halfway through the talk, anintense academic discussion (i.e., argument) broke out between the professor and hiscolleagues in the audience. An endless volley ensued about the nature of the fadingobserved in the measurements. As a lowly graduate student, I just took notes quietlyin the back of the room. I observed that the argument—which was left unresolved—was not a problem in understanding, but in semantics. The arguing researcherswere trying to describe a space-time wireless channel using archaic conventions.

These researchers—experts in narrowband analog communications —were desperately trying and failing to describe the radio channel experienced by mobile,broadband digital radios with antenna arrays. I got the impression that the field ofchannel modeling needed to be reworked to accommodate all these new, sophisticated space-time concepts in wireless. At the end of the presentation, I wrote downthe following analogy: "Frequency is to delay, as time is to Doppler, as space is towavenumber." I left that presentation with a great topic for a Ph.D. dissertation.

I began writing my dissertation as if it were a textbook in space-time channelmodeling, not really believing that it would actually become that one day (a goodlesson for other graduate students). Of course, that was a little too ambitious atthe time, but there was enough content after my defense to justify pursuing a bookafter my graduate work. I took a one-year trip to the Land of the Rising Sun tocomplete what is now Space-Time Wireless Channel.

The goal of this book is the same as my Ph.D. work: to provide simple, cohesiveconcepts for understanding radio channels that fade randomly with respect to time,frequency, and space. And I wanted it to be a book that even I could read. Thismeant adding lots of pictures, gutting gratuitous mathematics, and inserting otherunderstanding aides. In the process, I found that space-time wireless channels werenot so difficult to understand, provided a few basic principles in other disciplines(communications, random process theory, and electromagnetics) are known.

My hope is that Space-Time Wireless Channel offers a great deal to both thenovice radio engineer and the veteran wireless researcher. The text focuses on firstprinciples in radio channel modeling; it does not provide the deepest treatment ofall the signal-processing algorithms for space-time radios, since that type of discussion tends to multiply acronyms instead of genuine understanding. The bookcontains plenty of original material as well as new ways of looking at old problems.The seasoned researcher will notice the inclusion of many new concepts in channelmodeling and characterization—and will also notice the intentional omission of others. I have avoided the temptation of turning this book into a "cut-and-paste" job,which so often constitutes engineering texts nowadays.

Since it contains problem sets and a pedagogic presentation of material, thisbook may be used in graduate or even undergraduate engineering courses. Thebook is also intended to be used by graduate students or industry engineers as aresearch aid or a self-study course. This book is written with wireless engineers inmind. Many colleagues have pointed out that space-time channel modeling theoryapplies to problems in optics, radar, acoustics, and imaging—to name just a fewfields of study. I believe this text is useful to other engineers, physicists, or appliedmathematicians, although I apologize to them in advance for all the references towireless devices.

Combining disparate fields to synthesize a theoretical foundation creates allsorts of conflicts in notation. In fact, attempts to be consistent with the multipleconventions that exist in the research literature proved to be the most difficult partof writing Space-Time Wireless Channel. Although no desirable notation could befound, this book takes a "lesser-of-evils" approach to naming variables and functionsin analysis.

(To underscore the notation difficulty, consider the convention of using R todescribe the autocorrelation function of random processes. This notation conflictswith the convention for signal envelopes, so instead this book uses C to denote theautocorrelation function. But to describe the probability density function (PDF) ofenvelopes, we need a lowercase value of R to be the index of the PDF. However, r iscommonly used to describe position in radial coordinate systems, so we defer to theGreek ρ for the PDF index. This move, however, conflicts with standard practiceof using ρ to denote unit autocovariance of a random process, which becomes σin this text. Without these precautions, there would have been ridiculous-lookingfunctions such as RRr). Do not get me started about φ.)

Much of the original research contained in this book was funded by a Bradley Fellowship in Virginia Tech's department of Electrical and Computer Engineering,ITT Defense & Electronics, and the MPRG Industrial Affiliates program. The completion of this manuscript was supported by the Japanese Society for the Promotionof Science (JSPS) in the form of a long-term fellowship for visiting researchers. AndI cannot give enough thanks to my Japanese host professors, Dr. Norihiko Morinaga and Dr. Seiichi Sampei, and all of my great friends at Morinaga Laboratoryin Osaka University.


Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020