Home > Store

Signal Integrity - Simplified

Register your product to gain access to bonus material or receive a coupon.

Signal Integrity - Simplified


  • Sorry, this book is no longer in print.
Not for Sale


  • Copyright 2004
  • Edition: 1st
  • Book
  • ISBN-10: 0-13-066946-6
  • ISBN-13: 978-0-13-066946-9

The complete guide to understanding and designing for signal integrity

Suitable for even non-specialists, Signal Integrity—Simplified offers a comprehensive, easy-to-follow look at how physical interconnects affect electrical performance. World-class engineer Eric Bogatin expertly reviews the root causes of the four families of signal integrity problems and offers solutions to design them out early in the design cycle. Coverage includes:

  • An introduction to signal integrity and physical design
  • A fundamental understanding of what bandwidth, inductance, and characteristic impedance really mean
  • Analysis of resistance, capacitance, inductance, and impedance
  • The four important practical tools used to solve signal integrity problems: rules of thumb, analytic approximations, numerical simulation, and measurements
  • The effect of the physical design of interconnects on signal integrity
  • Solutions that do not hide behind mathematical derivations
  • Recommendations for design guidelines to improve signal integrity, and much more

Unlike related books that concentrate on theoretical derivation and mathematical rigor, this book emphasizes intuitive understanding, practical tools, and engineering discipline. Specially designed for everyone in the electronics industry, from electrical engineers to product managers, Signal Integrity—Simplified will prove itself an invaluable resource for helping you find and fix signal integrity problems before they become problems.

Sample Content

Online Sample Chapter

Signal Integrity, Impedance and Electrical Models

Downloadable Sample Chapter

Download the Sample Chapter related to this title.

Table of Contents


1. Signal Integrity Is in Your Future.

What Is Signal Integrity? Signal Quality on a Single Net. Cross Talk. Rail-Collapse Noise. Electromagnetic Interference (EMI). Two Important Signal Integrity Generalizations. Trends in Electronic Products. The Need for a New Design Methodology. A New Product Design Methodology. Simulations. Modeling and Models. Creating Circuit Models from Calculation. Three Types of Measurements. The Role of Measurements. The Bottom Line.

2. Time and Frequency Domains.

The Time Domain. Sine Waves in the Frequency Domain. Shorter Time to a Solution in the Frequency Domain. Sine Wave Features. The Fourier Transform. The Spectrum of a Repetitive Signal. The Spectrum of an Ideal Square Wave. From the Frequency Domain to the Time Domain. Effect of Bandwidth on Rise Time. Bandwidth and Rise Time. What Does “Significant” Mean? Bandwidth of Real Signals. Bandwidth and Clock Frequency. Bandwidth of a Measurement. Bandwidth of a Model. Bandwidth of an Interconnect. Bottom Line.

3. Impedance and Electrical Models.

Describing Signal-Integrity Solutions in Terms of Impedance. What Is Impedance? Real vs Ideal Circuit Elements. Impedance of an Ideal Resistor in the Time Domain. Impedance of an Ideal Capacitor in the Time Domain. Impedance of an Ideal Inductor in the Time Domain. Impedance in the Frequency Domain. Equivalent Electrical Circuit Models. Circuit Theory and SPICE. Introduction to Modeling. The Bottom Line.

4. The Physical Basis of Resistance.

Translating Physical Design into Electrical Performance. The Only Good Approximation for the Resistance of Interconnects. Bulk Resistivity. Resistance per Length. Sheet Resistance. The Bottom Line.

5. The Physical Basis of Capacitance.

Current Flow in Capacitors. The Capacitance of a Sphere. Parallel Plate Approximation. Dielectric Constant. Power and Ground Planes and Decoupling Capacitance. Capacitance per Length. 2D Field Solvers. Effective Dielectric Constant. The Bottom Line.

6. The Physical Basis of Inductance.

What Is Inductance? Inductance Principle #1: There Are Circular Magnetic-Field Line Loops around All Currents. Inductance Principle #2: Inductance Is the Number of Webers of Field Line Loops around a Conductor per Amp of Current through It. Self-Inductance and Mutual Inductance. Inductance Principle #3: When the Number of Field Line Loops around a Conductor Changes, There Will Be a Voltage Induced across the Ends of the Conductor. Partial Inductance. Effective, Total, or Net Inductance and Ground Bounce. Loop Self- and Mutual Inductance. The Power-Distribution System (PDS) and Loop Inductance. Loop Inductance per Square of Planes. Loop Inductance of Planes and Via Contacts. Loop Inductance of Planes with a Field of Clearance Holes. Loop Mutual Inductance. Equivalent Inductance. Summary of Inductance. Current Distributions and Skin Depth. High-Permeability Materials. Eddy Currents. The Bottom Line.

7. The Physical Basis of Transmission Lines.

Forget the Word Ground. The Signal. Uniform Transmission Lines. The Speed of Electrons in Copper. The Speed of a Signal in a Transmission Line. Spatial Extent of the Leading Edge. “Be the Signal”. The Instantaneous Impedance of a Transmission Line. haracteristic Impedance and Controlled Impedance. Famous Characteristic Impedances. The Impedance of a Transmission Line. Driving a Transmission Line. Return Paths. When Return Paths Switch Reference Planes. A First-Order Model of a Transmission Line. Calculating Characteristic Impedance with Approximations. Calculating the Characteristic Impedance with a 2D Field Solver. An n-Section Lumped Circuit Model. Frequency Variation of the Characteristic Impedance. The Bottom Line.

8. Transmission Lines and Reflections.

Reflections at Impedance Changes. Why Are There Reflections? Reflections from Resistive Loads. Source Impedance. Bounce Diagrams. Simulating Reflected Waveforms. Measuring Reflections with a TDR. Transmission Lines and Unintentional Discontinuities. When to Terminate. The Most Common Termination Strategy for Point-to-Point Topology. Reflections from Short Series Transmission Lines. Reflections from Short-Stub Transmission Lines. Reflections from Capacitive End Terminations. Reflections from Capacitive Loads in the Middle of a Trace. Capacitive Delay Adders. Effects of Corners and Vias. Loaded Lines. Reflections from Inductive Discontinuities. Compensation. The Bottom Line.

9. Lossy Lines, Rise-Time Degradation, and Material Properties.

Why Worry About Lossy Lines. Losses in Transmission Lines. Sources of Loss: Conductor Resistance and Skin Depth. Sources of Loss: The Dielectric. Dissipation Factor. The Real Meaning of Dissipation Factor. Modeling Lossy Transmission Lines. Characteristic Impedance of a Lossy Transmission Line. Signal Velocity in a Lossy Transmission Line. Attenuation and the dB. Attenuation in Lossy Lines. Measured Properties of a Lossy Line in the Frequency Domain. The Bandwidth of an Interconnect. Time-Domain Behavior of Lossy Lines. Improving the Eye Diagram of a Transmission Line. Pre-emphasis and Equalization. The Bottom Line.

10. Cross Talk in Transmission Lines.

Superposition. Origin of Coupling: Capacitance and Inductance. Cross Talk in Transmission Lines: NEXT and FEXT. Describing Cross Talk. The SPICE Capacitance Matrix. The Maxwell Capacitance Matrix and 2D Field Solvers. The Inductance Matrix. Cross Talk in Uniform Transmission Lines and Saturation Length. Capacitively Coupled Currents. Inductively Coupled Currents. Near-End Cross Talk. Far-End Cross Talk. Decreasing Far-End Cross Talk. Simulating Cross Talk. Guard Traces. Cross Talk and Dielectric Constant. Cross Talk and Timing. Switching Noise. Summary of Reducing Cross Talk. The Bottom Line.

11. Differential Pairs and Differential Impedance.

Differential Signaling. A Differential Pair. Differential Impedance with No Coupling. The Impact from Coupling. Calculating Differential Impedance. The Return-Current Distribution in a Differential Pair. Odd and Even Modes. Differential Impedance and Odd-Mode Impedance. Common Impedance and Even-Mode Impedance. Differential and Common Signals and Odd- and Even-Mode Voltage Components. Velocity of Each Mode and Far-End Cross Talk. Ideal Coupled Transmission-Line Model or an Ideal Differential Pair. Measuring Even- and Odd-Mode Impedance. Terminating Differential and Common Signals. Conversion of Differential to Common Signals. EMI and Common Signals. Cross Talk in Differential Pairs. Crossing a Gap in the Return Path. To Tightly Couple or Not to Tightly Couple. Calculating Odd and Even Modes from Capacitance- and Inductance-Matrix Elements. The Characteristic Impedance Matrix. The Bottom Line.

Appendix A.

Appendix B.

Appendix C.


About the Author.


Download the Index file related to this title.


Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020