Home > Store

Amazon Machine Learning LiveLessons

Amazon Machine Learning LiveLessons

Your browser doesn't support playback of this video. Please download the file to view it.

Online Video

Register your product to gain access to bonus material or receive a coupon.

Description

  • Copyright 2019
  • Edition: 1st
  • Online Video
  • ISBN-10: 0-13-485065-3
  • ISBN-13: 978-0-13-485065-8

More Than 3 Hours of Video Instruction 
Overview 
Amazon Machine Learning LiveLessons is designed to provide a solid foundational understanding of the data preparation and evaluation that’s necessary to run predictive analysis with Machine Learning models. The course covers the concepts necessary to understand Amazon Machine Learning and teaches the user how to leverage the benefits of predictive analysis. Usage scenarios are provided to inspire viewers to create their own value-added services on top of Amazon Machine Learning. 

Amazon Machine Learning LiveLessons contains more than 20 independent video lessons totaling more than 3 hours of instruction with demos, interactive labs, and detailed slide explanations. Hands-on labs with Amazon Machine Learning are included to provide necessary context and experience to create pragmatic applications. Viewers will walk away with a solid understanding of how Amazon Machine Learning is structured and how to apply it in their own scenarios.

Asli Bilgin’s knowledge comes from her unique experience working at Amazon and as a Machine Learning consultant for her business, Nokta Consulting. She uses her professional skills for her personal vintage jewelry business, oyacharm. She is an award-winning cloud computing executive who has more than two decades of experience working for companies such as Dell, Microsoft, and Amazon. She specializes in IT transformation and modernization leveraging disruptive technologies. At Amazon, Asli created, launched, and ran the global Software as a Service program and ran the Financial Services IT Transformation practice for AWS Professional Services. At Microsoft, she led the cloud and web strategy for 80 countries in the Middle East and Africa, based out of Dubai. In her early career, Asli served as a software developer, technical manager, and architect for large and complex enterprise projects. 

Topics include
Module 1: Amazon Machine Learning Basics
Module 2: Amazon Machine Learning Data Architecture
Module 3: Data and Schema Configuration
Module 4: Machine Learning Visualization and Modeling
Module 5: Predictions with Amazon Machine Learning

Skill Level
Beginner/Novice

Learn How To 
* Understand the concepts, taxonomy, and principles behind Machine Learning 
* Get started with the core Amazon Machine Learning service
* Solve for personalization, search, marketing, finance, productivity, and management efficiency using AML
* Configure a schema, and set up a data source using “small data” in S3
* Use data insights and visualization tools
* Leverage Features, Targets, Observations, Labeled Data, Unlabeled Data, and Ground Truth to prepare historical data for predictive analysis
* Prepare data for use in a regression model and a multi-class model
* Evaluate and refine Amazon ML model
* Use predictions

Who Should Take This Course 
IT technologists and hobbyists, computer science students, and domain experts who want to understand the basic principles of Amazon Machine Learning and its application and receive a hands-on practical demonstration of using Amazon Machine Learning. You don’t have to be a data scientist or professional developer to benefit from this course. In fact, small business owners who have a firm handle on their own business data would find value in the examples used, which is a retail business and small dataset.

Course Requirements
Familiarity with technology consoles and administrative interfaces would be very helpful. A rudimentary understanding of the Amazon Web Services platform would be a bonus, but not necessary to learn from this course. A basic understanding of how data and its schema is structured digitally would be an asset to understanding the concepts of Machine Learning.


Module Descriptions 
Module 1, “Amazon Machine Learning Basics,” discusses understanding how Amazon ML works and how you can frame problem sets. By the end, the first data set will be uploaded.

Module 2, “Amazon Machine Learning Data Architecture,” covers how to set up the source from SQL Server. The data to be downloaded will be provided, so SQL Server does not need to be installed.

In Module 3, “Data and Schema Configuration,” historical sales data is used to predict the future price of an item. “Gotchas” are showcased so a solid starting machine learning model can be built.

Module 4, “Machine Learning Visualization and Modeling,” uses data insights to further refine the model.

Module 5, “Predictions with Amazon Machine Learning,” examines predictions and determining future data. The model’s performance is analyzed, and real-time and batch predictions are applied. Finally, key concepts, questions to consider, and next steps are covered.

About Pearson Video Training
Pearson publishes expert-led video tutorials covering a wide selection of technology topics designed to teach you the skills you need to succeed. These professional and personal technology videos feature world-leading author instructors published by your trusted technology brands: Addison-Wesley, Cisco Press, Pearson IT Certification, Prentice Hall, Sams, and Que. Topics include IT Certification, Network Security, Cisco Technology, Programming, Web Development, Mobile Development, and more. Learn more about Pearson Video training at http://www.informit.com/video.


Video Lessons are available for download for offline viewing within the streaming format. Look for the green arrow in each lesson.

Sample Content

Table of Contents

Module 1: Amazon Machine Learning Basics
Lesson 1: Introduction
Lesson 2: Which Use Cases Can Amazon ML Solve?
Lesson 3: How Does Amazon ML Work?
Lesson 4: Practical Applications for Machine Learning
Lesson 5: Interactive Lab: Set up S3 Bucket for Amazon ML Usage
Module 2: Amazon Machine Learning Data Architecture
Lesson 6: Information Architecture
Lesson 7: Interactive Lab: Prepare Data
Lesson 8: Data Preparation
Module 3: Data and Schema Configuration
Lesson 9: Interactive Lab: Upload Data File to S3
Lesson 10: Interactive Lab: Amazon Machine Learning Dashboard
Lesson 11: Interactive Lab: Set up the Datasource
Lesson 12: Interactive Lab: Refine Schema
Module 4: Machine Learning Visualization and Modeling
Lesson 13: Interactive Lab: Data Insights and Visualization Tools
Lesson 14: Interactive Lab: Create a New Amazon ML Model
Lesson 15: Interactive Lab: Model Evaluation and Insights
Lesson 16: How to Refine a Model
Module 5: Predictions with Amazon Machine Learning
Lesson 17: Predictions
Lesson 18: Interactive Lab: Real-time Predictions
Lesson 19: Interactive Lab: Batch Predictions
Lesson 20: Interactive Lab: Around the World with a Multiclass Model
Lesson 21: Final Review and Next Steps
Summary

Module Descriptions 
Module 1, “Amazon Machine Learning Basics,” discusses understanding how Amazon ML works and how you can frame problem sets. By the end, the first data set will be uploaded.

Module 2, “Amazon Machine Learning Data Architecture,” covers how to set up the source from SQL Server. The data to be downloaded will be provided, so SQL Server does not need to be installed.

In Module 3, “Data and Schema Configuration,” historical sales data is used to predict the future price of an item. “Gotchas” are showcased so a solid starting machine learning model can be built.

Module 4, “Machine Learning Visualization and Modeling,” uses data insights to further refine the model.

Module 5, “Predictions with Amazon Machine Learning,” examines predictions and determining future data. The model’s performance is analyzed, and real-time and batch predictions are applied. Finally, key concepts, questions to consider, and next steps are covered.

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020